Advertisement

Content-Based Music Classification Using Ensemble of Classifiers

  • Manikanta Durga Srinivas AnisettyEmail author
  • Gagan K ShettyEmail author
  • Srinidhi Hiriyannaiah
  • Siddesh Gaddadevara Matt
  • K. G. Srinivasa
  • Anita Kanavalli
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11278)

Abstract

This paper presents an application of Ensemble learning in the field of audio data analytics. We propose a system using Hierarchical ensemble model to classify the genre of a music track based on the contents of the track. The hierarchical ensemble comprised of 7 classifiers trained on different sections of the dataset that can co-relate the output of each other for classifying the data. Using this hierarchical ensemble model, we achieved an accuracy boost of 15% over machine learning models. This hierarchical ensemble has been proven better than an ensemble model with hard voting logic in term of accuracy. This work describes the comparison of basic models with hierarchical model and its characteristics.

Keywords

Music classification Machine learning Ensemble learning Free music archive 

References

  1. 1.
    Choi, K., Fazekas, G., Sandler, M., Cho, K.: Transfer learning for music classification and regression tasks. arXiv preprint arXiv:1703.09179 (2017)
  2. 2.
    Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10590-1_53CrossRefGoogle Scholar
  3. 3.
    Choi, K., Joo, D., Kim, J.: Kapre: On-GPU audio preprocessing layers for a quick implementation of deep neural network models with keras. arXiv preprint arXiv:1706.05781 (2017)
  4. 4.
    LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document. Proc. IEEE 86(11), 2278–2324 (1998)CrossRefGoogle Scholar
  5. 5.
    Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images (2009)Google Scholar
  6. 6.
    Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 248–255. IEEE, June 2009Google Scholar
  7. 7.
    Defferrard, M., Benzi, K., Vandergheynst, P., Bresson, X.: FMA: A dataset for music analysis. arXiv preprint arXiv:1612.01840 (2016)
  8. 8.
    Tzanetakis, G., Cook, P.: Musical genre classification of audio signals. IEEE Trans. Speech Audio Process. 10(5), 293–302 (2002)CrossRefGoogle Scholar
  9. 9.
    Li, T., Ogihara, M., Li, Q.: A comparative study on content-based music genre classification. In: Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 282–289. ACM, July 2003Google Scholar
  10. 10.
    Li, T., Li, Q., Zhu, S., Ogihara, M.: A survey on wavelet applications in data mining. ACM SIGKDD Explor. Newsl. 4(2), 49–68 (2002)CrossRefGoogle Scholar
  11. 11.
    Panagakis, Y., Kotropoulos, C., Arce, G.R.: Music genre classification using locality preserving non-negative tensor factorization and sparse representations. In: ISMIR, vol. 14, no. 1, pp. 249–254, October 2009Google Scholar
  12. 12.
    Mandel, M.I., Ellis, D.: Song-level features and support vector machines for music classification. In: ISMIR, vol. 2005, pp. 594–599, September 2005Google Scholar
  13. 13.
    Weston, J., Watkins, C.: Multi-class support vector machines. Technical report CSD-TR-98-04, Department of Computer Science, Royal Holloway, University of London, May 1998Google Scholar
  14. 14.
    Suykens, J.A.: Nonlinear modelling and support vector machines. In: Proceedings of the 18th IEEE Instrumentation and Measurement Technology Conference, IMTC 2001, vol. 1, pp. 287–294. IEEE, May 2001Google Scholar
  15. 15.
    Silla Jr., C.N., Kaestner, C.A., Koerich, A.L.: Automatic music genre classification using ensemble of classifiers. In: IEEE International Conference on Systems, Man and Cybernetics, 2007, ISIC, pp. 1687–1692. IEEE, October 2007Google Scholar
  16. 16.
    Valentini, G.: Hierarchical ensemble methods for protein function prediction. ISRN Bioinform. 2014 (2014).  https://doi.org/10.1155/2014/901419CrossRefGoogle Scholar
  17. 17.
    Kim, B.S., Park, J.Y., Gilbert, A.C., Savarese, S.: Hierarchical classification of images by sparse approximation. Image Vis. Comput. 31(12), 982–991 (2013)CrossRefGoogle Scholar
  18. 18.
    Huang, J., Kumar, S.R., Zabih, R.: An automatic hierarchical image classification scheme. In: Proceedings of the Sixth ACM International Conference on Multimedia, pp. 219–228. ACM, September 1998Google Scholar
  19. 19.
    Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)MathSciNetzbMATHGoogle Scholar
  20. 20.
    McKinney, W.: Pandas: a foundational Python library for data analysis and statistics. Python High Perform. Sci. Comput., 1–9 (2011)Google Scholar
  21. 21.
    Hastie, T., Rosset, S., Zhu, J., Zou, H.: Multi-class adaboost. Stat. Interface 2(3), 349–360 (2009)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Manikanta Durga Srinivas Anisetty
    • 1
    Email author
  • Gagan K Shetty
    • 1
    Email author
  • Srinidhi Hiriyannaiah
    • 1
  • Siddesh Gaddadevara Matt
    • 1
  • K. G. Srinivasa
    • 2
  • Anita Kanavalli
    • 1
  1. 1.Ramaiah Institute of TechnologyBengaluruIndia
  2. 2.Ch. Brahm Prakash Government Engineering CollegeDelhiIndia

Personalised recommendations