Advertisement

An Orthonormalized Partial Least Squares Based Spatial Filter for SSVEP Extraction

  • G. R. Kiran KumarEmail author
  • M. Ramasubba Reddy
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11278)

Abstract

In this study, a novel orthonormalized partial least squares (OPLS) spatial filter is proposed for the extraction of the steady-state visual evoked potential (SSVEP) components buried in the electroencephalogram (EEG) data. The proposed method avoids over-fitting of the EEG data to the ideal SSVEP reference signals by reducing the over-emphasis of the target (pure sine-cosine) space. The paper presents the comparison of the detection accuracy of the proposed method with other existing spatial filters and discusses the shortcomings of these algorithms. The OPLS was tested across ten healthy subjects and its classification performance was examined. Further, statistical tests were performed to show the significant improvements in obtained detection accuracies. The result shows that the OPLS provides a significant improvement in detection accuracy across subjects compared to spatial filters under comparison. Hence, OPLS would act as a reliable and efficient spatial filter for separation of SSVEP components in brain-computer interface (BCI) applications.

Keywords

Steady-state visual evoked potential (SSVEP) Electroencephalogram (EEG) Brain-computer interface (BCI) Orthonormalized partial least squares (OPLS) 

References

  1. 1.
    Abu-Alqumsan, M., Peer, A.: Advancing the detection of steady-state visual evoked potentials in braincomputer interfaces. J. Neural Eng. 13(3), 036005 (2016).  https://doi.org/10.1088/1741-2560/13/3/036005CrossRefGoogle Scholar
  2. 2.
    Arenas-Garcia, J., Camps-Valls, G.: Efficient kernel orthonormalized PLS for remote sensing applications. IEEE Trans. Geosci. Remote. Sens. 46(10), 2872–2881 (2008).  https://doi.org/10.1109/TGRS.2008.918765CrossRefGoogle Scholar
  3. 3.
    Arenas-Garcia, J., Petersen, K.B., Camps-Valls, G., Hansen, L.K.: Kernel multivariate analysis framework for supervised subspace learning: a tutorial on linear and kernel multivariate methods. IEEE Signal Process. Mag. 30, 16–29 (2013).  https://doi.org/10.1109/MSP.2013.2250591CrossRefGoogle Scholar
  4. 4.
    Bashashati, A., Fatourechi, M., Ward, R.K., Birch, G.E.: A survey of signal processing algorithms in braincomputer interfaces based on electrical brain signals. J. Neural Eng. 4(2), 32–57 (2007).  https://doi.org/10.1088/1741-2560/4/2/R03CrossRefGoogle Scholar
  5. 5.
    Friman, O., Volosyak, I., Gräser, A.: Multiple channel detection of steady-state visual evoked potentials for brain-computer interfaces. IEEE Trans. Bio-Med. Eng. 54(4), 742–50 (2007).  https://doi.org/10.1109/TBME.2006.889160CrossRefGoogle Scholar
  6. 6.
    Gao, X., Xu, D., Cheng, M., Gao, S.: A BCI-based environmental controller for the motion-disabled. IEEE Trans. Neural Syst. Rehabil. Eng. 11(2), 137–40 (2003).  https://doi.org/10.1109/TNSRE.2003.814449CrossRefGoogle Scholar
  7. 7.
    Garcia-Molina, G., Zhu, D.: Optimal spatial filtering for the steady state visual evoked potential: BCI application. In: 5th International IEEE/EMBS Conference on Neural Engineering, pp. 156–160 (2011).  https://doi.org/10.1109/NER.2011.5910512
  8. 8.
    Ge, S., Wang, R., Leng, Y., Wang, H., Lin, P., Iramina, K.: A double-partial least-squares model for the detection of steady-state visual evoked potentials. IEEE J. Biomed. Health Inform. 21, 897–903 (2017).  https://doi.org/10.1109/JBHI.2016.2546311CrossRefGoogle Scholar
  9. 9.
    Herrmann, C.S.: Human EEG responses to 1–100 Hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenomena. Exp. Brain Res. 137(3–4), 346–353 (2001).  https://doi.org/10.1007/s002210100682CrossRefGoogle Scholar
  10. 10.
    Japkowicz, N., Shah, M.: Evaluating Learning Algorithms: A Classification Perspective. Cambridge University Press, New York (2011).  https://doi.org/10.1017/CBO9780511921803
  11. 11.
    Lalor, E.C., et al.: Steady-state VEP-based brain-computer interface control in an immersive 3D gaming environment. EURASIP J. Adv. Signal Process. 2005, 3156–3164 (2005)Google Scholar
  12. 12.
    Müller-Putz, G.R., Pfurtscheller, G.: Control of an electrical prosthesis with an SSVEP-based BCI. IEEE Trans. Bio-Med. Eng. 55(1), 361–4 (2008).  https://doi.org/10.1109/TBME.2007.897815CrossRefGoogle Scholar
  13. 13.
    Nakanishi, M., Wang, Y., Chen, X., Wang, Y.T., Gao, X., Jung, T.P.: Enhancing detection of SSVEPs for a high-speed brain speller using task-related component analysis 9294, 1 (2017)Google Scholar
  14. 14.
    Nathan, V., Jafari, R.: Design principles and dynamic front end reconfiguration for low noise EEG acquisition with finger based dry electrodes. IEEE Trans. Biomed. Circuits Syst. 9(5), 631–640 (2015).  https://doi.org/10.1109/TBCAS.2015.2471080CrossRefGoogle Scholar
  15. 15.
    Worsley, K., Poline, J.B., Friston, K., Evans, A.: Characterizing the response of PET and fMRI data using multivariate linear models. NeuroImage 6(4), 305–319 (1997).  https://doi.org/10.1006/nimg.1997.0294CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Indian Institute of Technology MadrasChennaiIndia

Personalised recommendations