Perceptual Filling-in of Blind-Spot for Surrounding Color Gradient Stimuli

  • Amrita MukherjeeEmail author
  • Avijit Paul
  • Rajarshi Roy
  • Shibsankar Roy
  • Kuntal Ghosh
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11278)


Perceptual filling-in of blind-spot is still a mystic brain mechanism for which a great deal of research work is still going on using psychophysical and computational techniques. We conduct psychophysical experiments with a large number of stimuli to examine a retinotopic rule recently proposed by a group of researchers based on Cortical Magnification Factor (CMF). In our experiment we come across a phenomenon which could not be explained by the above mentioned retinotopic rule. So, we propose a new hypothesis for blind-spot filling-in for non-homogeneous surroundings. Our hypothesis encircles the importance of Trichromatic theory, Information theory and CMF in blind-spot filling-in mechanism. We also observe that two kinds of illusions namely Simultaneous Brightness Contrast (SBC) and Brightness Assimilation (BA), till now thought of as antagonistic with respect to brightness induction, are significantly similar and it bears analogy with the blind-spot filling-in mechanism.


Blind-spot Cortical Magnification Factor Trichromatic theory Information theory Assimilation Contrast 


  1. 1.
    Li, H., Luo, J., Lu, Y., Kan, J., Spillmann, L., Wang, W.: Asymmetrical color filling-in from the nasal to the temporal side of the blind spot. Front. Hum. Neurosci. 8(7), 835–840 (2014). Scholar
  2. 2.
    Ramachandran, V.S.: Blind spots. Sci. Am. 266(5), 86–91 (1992)CrossRefGoogle Scholar
  3. 3.
    Ramachandran, V.S., Gregory, R.L.: Perceptual filling in of artificially induced scotomas in human vision. Nature 350(6320), 699 (1991). Scholar
  4. 4.
    Durgin, F.H., Tripathy, S.P., Levi, D.M.: On the filling in of the visual blind spot: Some rules of thumb. Perception 24(7), 827–840 (1995). Scholar
  5. 5.
    Lou, L., Chen, J., et al.: Attention and blind-spot phenomenology. PSYCHE 9, 02 (2003)Google Scholar
  6. 6.
    Hsieh, P.J., Tse, P.: Feature mixing rather than feature replacement during perceptual filling-in. Vis. Res. 49(4), 439–450 (2009). Scholar
  7. 7.
    Abadi, R.V., Jeffery, G., Murphy, J.S.: Awareness and filling-in of the human blind spot: linking psychophysics with retinal topography. Investig. Ophthalmol. Vis. Sci. 52(1), 541–548 (2011). Scholar
  8. 8.
    Paradiso, M.A., Nakayama, K.: Brightness perception and filling-in. Vis. Res. 31(7), 1221–1236 (1991). Scholar
  9. 9.
    He, S., Davis, W.L.: Filling-in at the natural blind spot contributes to binocular rivalry. Vis. Res. 41(7), 835–840 (2001). Scholar
  10. 10.
    De Weerd, P., Gattass, R., Desimone, R., Ungerleider, L.G.: Responses of cells in monkey visual cortex during perceptual filling-in of an artificial scotoma. Nature 377(6551), 731 (1995). Scholar
  11. 11.
    Meng, M., Remus, D.A., Tong, F.: Filling-in of visual phantoms in the human brain. Nature Neurosci. 8(9), 1248–1254 (2005). Scholar
  12. 12.
    Zur, D., Ullman, S.: Filling-in of retinal scotomas. Vis. Res. 43(9), 971–982 (2003). Scholar
  13. 13.
    Komatsu, H.: The neural mechanisms of perceptual filling-in. Nature Rev. Neurosci. 7(3), 220–231 (2006). Scholar
  14. 14.
    Awater, H., Kerlin, J.R., Evans, K.K., Tong, F.: Cortical representation of space around the blind spot. J. Neurophysiol. 94(5), 3314–3324 (2005). Scholar
  15. 15.
    Spillmann, L., Otte, T., Hamburger, K., Magnussen, S.: Perceptual filling-in from the edge of the blind spot. Vis. Res. 46(25), 4252–4257 (2006). Scholar
  16. 16.
    Weil, R.S., Rees, G.: A new taxonomy for perceptual filling-in. Brain Res. Rev. 67(1), 40–55 (2011). Scholar
  17. 17.
    Ghosh, K., Sarkar, S., Bhaumik, K.: A new multi-scale gaussian interpolator that models the blind spot in human eye. In: 2006 IEEE International Conference on Engineering of Intelligent Systems, pp. 1–6. IEEE (2006).
  18. 18.
    Rao, R.P., Ballard, D.H.: Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nature Neurosci. 2(1), 79–87 (1999). Scholar
  19. 19.
    Hosoya, T., Baccus, S.A., Meister, M.: Dynamic predictive coding by the retina. Nature 436(7047), 71–77 (2005). Scholar
  20. 20.
    Kwisthout, J., van Rooij, I.: Predictive coding and the Bayesian brain: intractability hurdles that are yet to be overcome. In: CogSci. (2013)Google Scholar
  21. 21.
    Raman, R., Sarkar, S.: Predictive coding: a possible explanation of filling-in at the blind spot. PloS one 11(3), e0151194 (2016). Scholar
  22. 22.
    Purves, D., et al.: Neuroscience. Sinauer Associates, Inc, Sunderland (2001)Google Scholar
  23. 23.
    Penrose, R., Mermin, N.D.: The Emperors New Mind: Concerning Computers, Minds, and The Laws of Physics (1990)CrossRefGoogle Scholar
  24. 24.
    Ghosh, K., Bhaumik, K.: Complexity in human perception of brightness: a historical review on the evolution of the philosophy of visual perception. OnLine J. Biol. Sci. 10(1), 17–35 (2010)CrossRefGoogle Scholar
  25. 25.
    Jory, M.K., Day, R.H.: The relationship between brightness contrast and illusory contours. Perception 8(1), 3–9 (1979). Scholar
  26. 26.
    Shapley, R., Reid, R.C.: Contrast and assimilation in the perception of brightness. Proc. Natl. Acad. Sci. 82(17), 5983–5986 (1985). Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Center for Soft Computing ResearchIndian Statistical InstituteKolkataIndia
  2. 2.TATA Consultancey ServicesKolkataIndia
  3. 3.Indian Institute of TechnologyIndoreIndia
  4. 4.Machine Intelligence UnitIndian Statistical InstituteKolkataIndia

Personalised recommendations