Advertisement

Modeling of Supersonic Separators and Membrane Permeation Units for Processing of CO2-Rich Natural Gas with HYSYS Implementation

  • Lara de Oliveira Arinelli
  • José Luiz de MedeirosEmail author
  • Alexandre Mendonça Teixeira
  • Ofélia de Queiroz Fernandes Araújo
Chapter

Abstract

This chapter is dedicated to describing the numerical model of membrane permeation and the rigorous thermodynamic model of supersonic separators and their installation in HYSYS process simulator. It also recapitulates the determination of multiphase speed of sound from Chap.  5 for accurate calculation of Mach number within the supersonic separator. Two unit operation extensions (UOEs) were developed in Visual Basic programming language in integration with HYSYS simulator. MP-UOE uses an approximate method calibrated with operation data, whereas SS-UOE is entirely based on thermodynamics, dismissing calibration techniques. MP-UOE and SS-UOE use the thermodynamic infrastructure of HYSYS: property packages and several proved multiphase flash algorithms. Case studies are investigated for validation and certification of both unit operations. A literature review is also presented.

References

  1. Alfyorov, V., Bagirov, L., Dmitriev, L., Feygin, V., Imaev, S., Lacey, J.: Supersonic nozzle efficiently separates natural gas components. Oil Gas J. 103, 53–58 (2005)Google Scholar
  2. Araújo, O.Q.F., Reis, A.C., de Medeiros, J.L., Nascimento, J.F., Grava, W.M., Musse, A.P.S.: Comparative analysis of separation technologies for processing carbon dioxide rich natural gas in ultra-deepwater oil fields. J. Clean. Prod. 155, 12–22 (2017).  https://doi.org/10.1016/j.jclepro.2016.06.073CrossRefGoogle Scholar
  3. Arina, R.: Numerical simulation of near-critical fluids. Appl. Numer. Math. 51, 409–426 (2004).  https://doi.org/10.1016/j.apnum.2004.06.002MathSciNetCrossRefzbMATHGoogle Scholar
  4. Arinelli, L.O., Trotta, T.A.F., Teixeira, A.M., de Medeiros, J.L., Araújo, O.Q.F.: Offshore processing of CO2 rich natural gas with supersonic separator versus conventional routes. J. Nat. Gas Sci. Eng. 46:199–221 (2017).  https://doi.org/10.1016/j.jngse.2017.07.010CrossRefGoogle Scholar
  5. Arinelli, L.O., Araújo, O.Q.F., de Medeiros, J.L.: Dynamic simulation and analysis of slug flow impact on offshore natural gas processing: TEG dehydration, Joule-Thomson expansion and membrane separation. Comput. Aided Chem. Eng. 37, 1775–1780 (2015).  https://doi.org/10.1016/B978-0-444-63577-8.50141-8CrossRefGoogle Scholar
  6. Cao, X., Yang, W.: The dehydration performance evaluation of a new supersonic swirling separator. J. Nat. Gas Sci. Eng. 27, 1667–1676 (2015a).  https://doi.org/10.1016/j.jngse.2015.10.029CrossRefGoogle Scholar
  7. Cao, X., Yang, W.: Numerical simulation of binary-gas condensation characteristics in supersonic nozzles. J. Nat. Gas Sci. Eng. 25, 197–206 (2015b).  https://doi.org/10.1016/j.jngse.2015.05.005CrossRefGoogle Scholar
  8. Castier, M.: Effect of side streams on supersonic gas separations. J. Nat. Gas Sci. Eng. 35, 299–308 (2016).  https://doi.org/10.1016/j.jngse.2016.08.065CrossRefGoogle Scholar
  9. Castier, M.: Fluid phase equilibria thermodynamic speed of sound in multiphase systems. Fluid Phase Equilib. 306, 204–211 (2011).  https://doi.org/10.1016/j.fluid.2011.04.002CrossRefGoogle Scholar
  10. Castier, M.: Modeling and simulation of supersonic gas separations. J. Nat. Gas Sci. Eng. 18, 304–311 (2014).  https://doi.org/10.1016/j.jngse.2014.03.014CrossRefGoogle Scholar
  11. Cavett, R.H.: Application of numerical methods to the convergence of simulated processes involving recycle loops. Am. Petrol. Inst. 43, 57 (1963)Google Scholar
  12. de Medeiros, J.L., Arinelli, L.O., Araújo, O.Q.F.: Speed of sound of multiphase and multi-reactive equilibrium streams: a numerical approach for natural gas applications. J. Nat. Gas Sci. Eng. 46, 222–241 (2017).  https://doi.org/10.1016/j.jngse.2017.08.006CrossRefGoogle Scholar
  13. GPSA (Gas Processors Suppliers Association).: Engineering Data Book, 12th edn. Gas Processors Suppliers Association, Tulsa (2004)Google Scholar
  14. Hammer, M., Wahl, P.E., Anantharaman, R., Berstad, D., Lervåg, K.Y.: CO2 capture from off-shore gas turbines using supersonic gas separation. Energy Procedia 63, 243–252 (2014).  https://doi.org/10.1016/j.egypro.2014.11.026CrossRefGoogle Scholar
  15. Hlavinka, M.W., Hernandez, V.N., McCartney, D.: Proper Interpretation of Freezing and Hydrate Prediction Results from Process Simulation. Bryan Research & Engineering Inc., (2006)Google Scholar
  16. Honeywell.: Honeywell UOP technology is used to clean natural gas on FPSO vessels. Membr. Technol. 5 (2012).  https://doi.org/10.1016/s0958-2118(12)70011-3
  17. Hoorfar, M., Alcheikhhamdon, Y., Chen, B.: A novel tool for the modeling, simulation and costing of membrane based gas separation processes using Aspen HYSYS: optimization of the CO2/CH4 separation process. Comput. Chem. Eng. 117, 11–24 (2018).  https://doi.org/10.1016/j.compchemeng.2018.05.013CrossRefGoogle Scholar
  18. Imaev, S.Z., Bagirov, L.A., Borisov, V.E., Voytenkov, E.V, Engineering, E.: New low temperature process of CO2 recovery from natural gases. In: SPE Asia Pacific Oil & Gas Conference and Exhibition, 2014. Society of Petroleum Engineers, Adelaide, Australia, pp. 14–16Google Scholar
  19. Karimi, A., Abdi, M.A.: Selective dehydration of high-pressure natural gas using supersonic nozzles. Chem. Eng. Process. Process Intensif. 48, 560–568 (2009).  https://doi.org/10.1016/j.cep.2008.09.002CrossRefGoogle Scholar
  20. Machado, P.B., Monteiro, J.G.M., Medeiros, J.L., Epsom, H.D., Araujo, O.Q.F.: Supersonic separation in onshore natural gas dew point plant. J. Nat. Gas Sci. Eng. 6, 43–49 (2012).  https://doi.org/10.1016/j.jngse.2012.03.001CrossRefGoogle Scholar
  21. Nichita, D.V., Khalid, P., Broseta, D.: Calculation of isentropic compressibility and sound velocity in two-phase fluids. Fluid Phase Equilib. 291(1), 95–102 (2010).  https://doi.org/10.1016/j.fluid.2009.12.022CrossRefGoogle Scholar
  22. Samawe, R.A., Rostani, K., Jalil, A.M., Esa, M., Othman, N.: Concept proofing of supersonic nozzle separator for CO2 separation from natural gas using a flow loop. In: Offshore Technology Conference, 2014 Offshore Technology Conference Asia. Kuala Lumpur, Malaysia, pp. 2373–2376Google Scholar
  23. Schinkelshoek, P., Epsom, H.D.: Supersonic gas conditioning—commercialisation of twister technology. In: GPA Annual Convention Proceedings, pp. 739–745. Grapevine, Texas, USA, (2008)Google Scholar
  24. Secchi, R., Innocenti, G., Fiaschi, D.: Supersonic swirling separator for natural gas heavy fractions extraction: 1D model with real gas EOS for preliminary design. J. Nat. Gas Sci. Eng. 34, 197–215 (2016).  https://doi.org/10.1016/j.jngse.2016.06.061CrossRefGoogle Scholar
  25. Shooshtari, R.S.H., Shahsavand, A.: Reliable prediction of condensation rates for purification of natural gas via supersonic separators. Sep. Purif. Technol. 116, 458–470 (2013).  https://doi.org/10.1016/j.seppur.2013.06.009CrossRefGoogle Scholar
  26. Shooshtari, S.H.R., Shahsavand, A.: Maximization of energy recovery inside supersonic separator in the presence of condensation and normal shock wave. Energy 120, 153–163 (2017).  https://doi.org/10.1016/j.energy.2016.12.060CrossRefGoogle Scholar
  27. Trusler, J.P.M.: Equation of state for solid phase I of carbon dioxide valid for temperatures up to 800 K and pressures up to 12 GPa. J. Phys. Chem. Ref. Data 40, 4 (2011)Google Scholar
  28. Twister, B.V.: Twister supersonic separator (WWW Document). Prod. Serv. URL http://twisterbv.com/products-services/twister-supersonic-separator/. Accessed 1 Jan 15
  29. Wen, C., Cao, X., Yang, Y., Li, W.: An unconventional supersonic liquefied technology for natural gas. Energy Educ. Sci. Technol. Part A: Energy Sci. Res. 30(1), 651–660 (2012)Google Scholar
  30. Wood, A.B.: A Textbook of Sound: Being an Account of the Physics of Vibrations with Special Reference to Recent Theoretical and Technical Developments. The Macmillan Company, New York (1930)zbMATHGoogle Scholar
  31. Yang, Y., Wen, C., Wang, S., Feng, Y.: Numerical simulation of real gas flows in natural gas supersonic separation processing. J. Nat. Gas Sci. Eng. 21, 829–836 (2014).  https://doi.org/10.1016/j.jngse.2014.10.010CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Lara de Oliveira Arinelli
    • 1
  • José Luiz de Medeiros
    • 1
    Email author
  • Alexandre Mendonça Teixeira
    • 1
  • Ofélia de Queiroz Fernandes Araújo
    • 1
  1. 1.Escola de QuímicaFederal University of Rio de Janeiro (UFRJ)Rio de JaneiroBrazil

Personalised recommendations