Advanced Modelling Approaches

  • David MašínEmail author
Part of the Springer Series in Geomechanics and Geoengineering book series (SSGG)


The two reference models for sand and clay, introduced in Chaps.  5 and  6, cover the behaviour of a variety of common soils under standard conditions. However, specific applications or specific soil types require enhancements of these models to achieve the predictive goal. A selection of such enhancements is described this chapter. The readers are introduced to methods for predicting small strain stiffness, rate effects, effects of structure, partial saturation, thermal effects and stiffness anisotropy within the theory of hypoplasticity.


  1. 1.
    Bauer, E., Wu, W.: A hypoplastic model for granular soils under cyclic loading. In: Kolymbas, D. (ed.) Modern Approaches to Plasticity, pp. 247–258. Elsevier Science Publishers B.V. (1993)Google Scholar
  2. 2.
    Niemunis, A., Herle, I.: Hypoplastic model for cohesionless soils with elastic strain range. Mech. Cohesive-Frict. Mater. 2(4), 279–299 (1997)Google Scholar
  3. 3.
    Niemunis, A., Prada Sarmiento, L.F., Grandas Tavera, C.E.: Paraelasticity. Acta Geotech. 6, 67–80 (2011)Google Scholar
  4. 4.
    Niemunis, A., Prada Sarmiento, L.F., Grandas Tavera, C.E.: Extended paraelasticity and its application to a boundary value problem. Acta Geotech. 6, 91–92 (2011)Google Scholar
  5. 5.
    Fuentes, W., Triantafyllidis, T.: ISA: a constitutive model for deposited sand. In: Schanz, T., Hettler, A. (eds.) Aktuelle Forschung in der Bodenmechanik 2015, pp. 169–187. Springer, Berlin (2015)Google Scholar
  6. 6.
    Wegener, D., Herle, I.: Prediction of permanent soil deformations due to cyclic shearing with a hypoplastic constitutive model. Geotechnik 37(2), 113–122 (2014)Google Scholar
  7. 7.
    Wegener, D.: Numerical investigation of permanent soil displacements due to dynamic loading (in german). Ph.D. thesis, Technische Universität Dresden (2013)Google Scholar
  8. 8.
    Mašín, D.: Clay hypoplasticity model including stiffness anisotropy. Géotechnique 64(3), 232–238 (2014)Google Scholar
  9. 9.
    Wroth, C., Houlsby, G.: Soil mechanics - property characterisation, and analysis procedures. In: Proceedings of \(11^{th}\) International Conference on Soil Mechanics and Foundation Engineering, San Francisco, vol. 1, pp. 1–55. A.A. Balkema, Rotterdam (1985)Google Scholar
  10. 10.
    Rott, J., Mašín, D., Boháč, J., Krupička, M., Mohyla, T.: Evaluation of \(k_0\) in stiff clay by back-analysis of convergence measurements from unsupported cylindrical cavity. Acta Geotech. (in print) 10 (2015)Google Scholar
  11. 11.
    Atkinson, J.H., Richardson, D., Stallebrass, S.E.: Effects of recent stress history on the stiffness of overconsolidated soil. Géotechnique 40(4), 531–540 (1990)Google Scholar
  12. 12.
    Clayton, C.R.I., Heymann, G.: Stiffness of geomaterials at very small strains. Géotechnique 51(3), 245–255 (2001)Google Scholar
  13. 13.
    Hong, Y., Koo, C.H., Zhou, C., Ng, C.W.W., Wang, L.: Small strain path-dependent stiffness of toyoura sand: laboratory measurement and numerical implementation. Int. J. Geomech. 17(1), 291–302 (2017)Google Scholar
  14. 14.
    Gasparre, A.: Advanced laboratory characterisation of London Clay. Ph.D. thesis, University of London, Imperial College of Science, Technology and Medicine (2005)Google Scholar
  15. 15.
    Gasparre, A., Nishimura, S., Minh, N.A., Coop, M.R., Jardine, R.J.: The stiffness of natural London Clay. Géotechnique 57(1), 33–47 (2007)Google Scholar
  16. 16.
    Mašín, D.: 3D modelling of a NATM tunnel in high \(K_0\) clay using two different constitutive models. J. Geotech. Geoenvironmental Eng. ASCE 135(9), 1326–1335 (2009)Google Scholar
  17. 17.
    Ishihara, K., Tatsuoka, F., Yasuda, S.: Undrained deformation and liquefaction of sand under cyclic stresses. Soils Found. 15(1), 29–44 (1975)Google Scholar
  18. 18.
    Herle, I., Gudehus, G.: Determination of parameters of a hypoplastic constitutive model from properties of grain assemblies. Mech. Cohesive-Frict. Mater. 4, 461–486 (1999)Google Scholar
  19. 19.
    Sturm, H.: Numerical investigation of the stabilisation behaviour of shallow foundations under alternate loading. Acta Geotech. 4, 283–292 (2009)Google Scholar
  20. 20.
    Ng, C.W.W., Boonyarak, T., Mašín, D.: Three-dimensional centrifuge and numerical modeling of the interaction between perpendicularly crossing tunnels. Can. Geotech. J. 50(9), 935–946 (2013)Google Scholar
  21. 21.
    Niemunis, A.: Extended Hypoplastic Models for Soils. Habilitation thesis, Ruhr-University, Bochum (2003)Google Scholar
  22. 22.
    Niemunis, A., Grandas Tavera, C.E., Prada Sarmiento, L.F.: Anisotropic visco-hypoplasticity. Acta Geotech. 4(4), 293–314 (2009)Google Scholar
  23. 23.
    Gudehus, G.: A visco-hypoplastic constitutive relation for soft soils. Soils Found. 44(4), 11–25 (2004)Google Scholar
  24. 24.
    Gudehus, G.: A comprehensive constitutive equation for granular materials. Soils Found. 36(1), 1–12 (1996)Google Scholar
  25. 25.
    von Wolffersdorff, P.A.: A hypoplastic relation for granular materials with a predefined limit state surface. Mech. Cohesive-Frict. Mater. 1(3), 251–271 (1996)Google Scholar
  26. 26.
    Matsuoka, H., Nakai, T.: Stress-deformation and strength characteristics of soil under three different principal stresses. Proc. Jpn. Soc. Civ. Eng. 232, 59–70 (1974)Google Scholar
  27. 27.
    Jerman, J., Mašín, D.: Hypoplastic and viscohypoplastic models for soft clays with strength anisotropy (submitted) (2018)Google Scholar
  28. 28.
    Rangeard, D.: Identification des caracteristiques hydro-mecaniques d’une argile par analyse inverse des essais pressiometriques. Ph.D. thesis, Ecole Centrale de Nantes et l’Universite de Nantes (2002)Google Scholar
  29. 29.
    Yin, Z.Y., Chang, C.S., Karstunen, M., Hicher, P.Y.: An anisotropic elastic-viscoplastic model for soft clays. Int. J. Solids Struct. 47, 665–677 (2010)zbMATHGoogle Scholar
  30. 30.
    Topolnicki, M.: Observed stress-strain behaviour of remoulded saturated clay and examination of two constitutive models. Veröffentlichungen des Institutes für Bodenmechanik und Felsmechanik der Universität Fridericiana in Karlsruhe (1987). Heft 107Google Scholar
  31. 31.
    Burland, J.B.: On the compressibility and shear strength of natural clays. Géotechnique 40(3), 329–378 (1990)Google Scholar
  32. 32.
    Cotecchia, F., Chandler, J.: A general framework for the mechanical behaviour of clays. Géotechnique 50(4), 431–447 (2000)Google Scholar
  33. 33.
    Leroueil, S., Vaughan, P.R.: The important and congruent effects of structure in natural soils and weak rocks. Géotechnique 40(3), 467–488 (1990)Google Scholar
  34. 34.
    Mašín, D.: A hypoplastic constitutive model for clays with meta-stable structure. Can. Geotech. J. 44(3), 363–375 (2007)Google Scholar
  35. 35.
    Baudet, B.A., Stallebrass, S.E.: A constitutive model for structured clays. Géotechnique 54(4), 269–278 (2004)Google Scholar
  36. 36.
    Nash, D.F.T., Sills, G.C., Davison, L.R.: One-dimensional consolidation testing of soft clay from Bothkennar. Géotechnique 42(2), 241–256 (1992)Google Scholar
  37. 37.
    Callisto, L., Rampello, S.: An interpretation of structural degradation for three natural clays. Can. Geotech. J. 41, 392–407 (2004)Google Scholar
  38. 38.
    Liu, M.D., Carter, J.P.: A structured Cam Clay model. Can. Geotech. J. 39, 1313–1332 (2002)Google Scholar
  39. 39.
    Wheeler, S.J., Näätänen, A., Karstunen, M., Lojander, M.: An anisotropic elastoplastic model for soft clays. Can. Geotech. J. 40, 403–418 (2003)Google Scholar
  40. 40.
    Mróz, Z., Norris, V.A., Zienkiewicz, O.C.: Application of an anisotropic hardening model in the analysis of elasto-plastic deformation of soil. Géotechnique 29(1), 1–34 (1979)Google Scholar
  41. 41.
    Rouainia, M., Muir Wood, D.: A kinematic hardening constitutive model for natural clays with loss of structure. Géotechnique 50(2), 153–164 (2000)Google Scholar
  42. 42.
    Kavvadas, M., Amorosi, A.: A constitutive models for structured soils. Géotechnique 50(3), 263–273 (2000)Google Scholar
  43. 43.
    Gajo, A., Muir Wood, D.: A new approach to anisotropic, bounding surface plasticity: general formulation and simulations of natural and reconstituted clay behaviour. Int. J. Numer. Anal. Methods Geomech. 25, 207–241 (2001)zbMATHGoogle Scholar
  44. 44.
    Cudny, M., Vermeer, P.A.: On the modelling of anisotropy and destruction of soft clays within the multi-laminate framework. Comput. Geotech. 31(1), 1–22 (2004)Google Scholar
  45. 45.
    Rocchi, G., Fontana, M., Da Prat, M.: Modelling of natural soft clay destruction processes using viscoplasticity theory. Géotechnique 53(8), 729–745 (2003)Google Scholar
  46. 46.
    Asaoka, A.: Compaction of sand and consolidation of clay: a super/subloading yield surface approach. In: Proceedings of \(11^{th}\) International Conference IACMAG, vol. 4, pp. 121–140. Turin, Italy (2005)Google Scholar
  47. 47.
    Bauer, E., Wu, W.: Extension of hypoplastic constitutive model with respect to cohesive powders. In: Siriwardane, Z. (ed.) Computer Methods and Advances in Geomechanics, pp. 531–536. A.A. Balkema, Rotterdam (1994)Google Scholar
  48. 48.
    Gullà, G., Mandaglio, M.C., Moraci, N.: Effect of weathering on the compressibility and shear strength of a natural clay. Can. Geotech. J. 43, 618–625 (2006)Google Scholar
  49. 49.
    Mašín, D.: A hypoplastic constitutive model for clays. Int. J. Numer. Anal. Methods Geomech. 29(4), 311–336 (2005)zbMATHGoogle Scholar
  50. 50.
    Callisto, L., Calabresi, G.: Mechanical behaviour of a natural soft clay. Géotechnique 48(4), 495–513 (1998)Google Scholar
  51. 51.
    Smith, P.R., Jardine, R.J., Hight, D.W.: The yielding of Bothkennar clay. Géotechnique 42(2), 257–274 (1992)Google Scholar
  52. 52.
    Mašín, D., Rott, J.: Small strain stiffness anisotropy of natural sedimentary clays: review and a model. Acta Geotech. 9(2), 299–312 (2014)Google Scholar
  53. 53.
    Kopito, D., Klar, A.: Discussion: hypoplastic Cam-clay model. D. Mašín (2012) Géotechnique 62(6), 549–553. Géotechnique 63(10), 889–890 (2013)Google Scholar
  54. 54.
    Niemunis, A.: Anisotropic effects in hypoplasticity. In: Di Benedetto et al. (ed.) Deformation Characteristics of Geomaterials, pp. 1211–1217 (2003)Google Scholar
  55. 55.
    Wu, W.: Rational approach to anisotropy of sand. Int. J. Numer. Anal. Methods Geomech. 22, 921–940 (1998)zbMATHGoogle Scholar
  56. 56.
    Wu, W., Huang, W.: Rational approach to anisotropy of rocks. In: Proceedings of EUROCK Symposium, pp. 623–628. Aachen, Germany (2000)Google Scholar
  57. 57.
    Spencer, A.J.M.: The formulation of constitutive equation for anisotropic solids. In: Boehler, J.P. (ed.) Mechanical Behaviour of Anisotropic Solids. Martinus Nijhoff Publishers, The Hague (1982)Google Scholar
  58. 58.
    Lubarda, V.A., Chen, M.C.: On the elastic moduli and compliences of transversely isotropic and orthotropic materials. J. Mech. Mater. Struct. 3(1), 153–171 (2008)Google Scholar
  59. 59.
    Graham, J., Houlsby, G.T.: Anisotropic elasticity of a natural clay. Géotechnique 33(2), 165–180 (1983)Google Scholar
  60. 60.
    Mavko, G., Mukerji, T., Dvorkin, J.: The Rock Physics Handbook: Tools for Seismic Analysis of Porous Media, 2nd edn. Cambridge University Press, New York (2009)Google Scholar
  61. 61.
    Nishimura, S.: Laboratory study on anisotropy of natural London clay. Ph.D. thesis, University of London, Imperial College of Science, Technology and Medicine (2005)Google Scholar
  62. 62.
    Nishimura, S., Minh, N.A., Jardine, R.J.: Shear strength anisotropy of natural London Clay. Géotechnique 57(1), 49–62 (2007)Google Scholar
  63. 63.
    Mašín, D., Khalili, N.: A hypoplastic model for mechanical response of unsaturated soils. Int. J. Numer. Anal. Methods Geomech. 32(15), 1903–1926 (2008)zbMATHGoogle Scholar
  64. 64.
    Mašín, D.: Predicting the dependency of a degree of saturation on void ratio and suction using effective stress principle for unsaturated soils. Int. J. Numer. Anal. Methods Geomech. 34, 73–90 (2010)zbMATHGoogle Scholar
  65. 65.
    Gudehus, G.: A comprehensive concept for non-saturated granular bodies. In: Alonso, D. (eds.) \(1^{st}\) International Conference on Unsaturated Soils, Paris, France, vol. 2, pp. 725–737. Balkema, Rotterdam (1995)Google Scholar
  66. 66.
    Bauer, E., Cen, W., Zhu, Y., Kast, K., Tantono, S.F.: Modelling of partly saturated weathered broken rock. In: Schweiger, H.F. (ed.) Proceedings of \(6^{th}\) European Conference on Numerical Methods in Geomechanics (NUMGE06), Graz, Austria, pp. 87–92. Taylor & Francis Group, London (2006)Google Scholar
  67. 67.
    Bauer, E.: Hypoplastic modelling of moisture-sensitive weathered rockfill materials. Acta Geotech. 4(4), 261–272 (2009)Google Scholar
  68. 68.
    Bishop, A.W.: The principle of effective stress. Teknisk Ukeblad 106(39), 859–863 (1959)Google Scholar
  69. 69.
    Gens, A.: Constitutive modelling, application to compacted soil. In: Alonso, D. (eds.) \(1^{st}\) International Conference on Unsaturated Soils, Paris, France, vol. 3, pp. 1179–1200. Balkema, Rotterdam (1996)Google Scholar
  70. 70.
    Fredlund, D.G., Morgernstern, N.R.: Stress state variables for unsaturated soils. J. Geotech. Eng. Div. ASCE 103(5), 447–466 (1977)Google Scholar
  71. 71.
    Khalili, N., Khabbaz, M.H.: A unique relationship for \(\chi \) for the determination of the shear strength of unsaturated soils. Géotechnique 48(2), 1–7 (1998)Google Scholar
  72. 72.
    Alonso, E.E., Pereira, J.M., Vaunat, J., Olivella, S.: A microstructurally based effective stress for unsaturated soils. Géotechnique 60(12), 913–925 (2010)Google Scholar
  73. 73.
    Alonso, E., Gens, A., Josa, A.: A constitutive model for partially saturated soils. Géotechnique 40(3), 405–430 (1990)Google Scholar
  74. 74.
    Mašín, D., Khalili, N.: A thermo-mechanical model for variably saturated soils based on hypoplasticity. Int. J. Numer. Anal. Methods Geomech. 36(12), 1461–1485 (2012)Google Scholar
  75. 75.
    Sun, D.A., Sheng, D., Xu, Y.F.: Collapse behaviour of unsaturated compacted soil with different initial densities. Can. Geotech. J. 44(6), 673–686 (2007)Google Scholar
  76. 76.
    Vanapalli, S.K., Fredlund, D.G., Pufahl, D.E.: The influence of soil structure and stress history on the soil - water characteristics of a compacted till. Géotechnique 49(2), 143–159 (1999)Google Scholar
  77. 77.
    Viaene, P., Vereecken, H., Diels, J., Feyen, J.: A statistical analysis of six hysteresis models for the moisture retention characteristic. Soil Sci. 157(6), 345–355 (1994)Google Scholar
  78. 78.
    Zhou, A.N., Sheng, D., Sloan, S.W., Gens, A.: Interpretation of unsaturated soil behaviour in the stress - saturation space, I: volume change and water retention behaviour. Comput. Geotech. 43, 178–187 (2012)Google Scholar
  79. 79.
    Brooks, R., Corey, A.: Hydraulic properties of porous media. Hydrology paper No. 3, Colorado state University (1964)Google Scholar
  80. 80.
    Jotisankasa, A., Ridley, A., Coop, M.: Collapse behaviour of compacted silty clay in suction-monitored oedometer apparatus. J. Geotech. Geoenvironmental Eng. ASCE 133(7), 867–877 (2007)Google Scholar
  81. 81.
    Wheeler, S.J., Sharma, R.S., Buisson, M.S.R.: Coupling of hydraulic hysteresis and stress-strain behaviour in unsaturated soils. Géotechnique 53, 41–54 (2003)Google Scholar
  82. 82.
    Fuentes, W., Triantafyllidis, T.: Hydro-mechanical hypoplastic models for unsaturated soils under isotropic stress conditions. Comput. Geotech. 51, 72–82 (2013)Google Scholar
  83. 83.
    Mašín, D.: Double structure hydromechanical coupling formalism and a model for unsaturated expansive clays. Eng. Geol. 165, 73–88 (2013)Google Scholar
  84. 84.
    Wong, K.S., Mašín, D.: Coupled hydro-mechanical hypoplastic model for partially saturated soils incorporating small strain stiffness. Comput. Geotech. 61, 355–369 (2014)Google Scholar
  85. 85.
    Khalili, N., Zargarbashi, S.: Influence of hydraulic hysteresis on effective stress in unsaturated soils. Géotechnique 60(9), 729–734 (2010)Google Scholar
  86. 86.
    Sun, D.A., Matsuoka, H., Xu, Y.F.: Collapse behaviour of compacted clays in suction-controlled triaxial tests. Geotech. Test. J. 27(4), 362–370 (2004)Google Scholar
  87. 87.
    D’Onza, F., Gallipoli, D., Wheeler, S., Casini, F., Vaunat, J., Khalili, N., Laloui, L., Mancuso, C., Mašín, D., Nuth, M., Pereira, M., Vassallo, R.: Benchmark of constitutive models for unsaturated soils. Géotechnique 61(4), 283–302 (2011)Google Scholar
  88. 88.
    Uchaipchat, A., Khalili, N.: Experimental investigation of thermo-hydro-mechanical behaviour of an unsaturated silt. Géotechnique 59(4), 339–353 (2009)Google Scholar
  89. 89.
    Campanella, R.G., Mitchell, J.K.: Influence of temperature variations on soil behaviour. J. Soil Mech. Found. Div. ASCE 94(3), 709–734 (1968)Google Scholar
  90. 90.
    Cekerevac, C., Laloui, L.: Experimental study of thermal effects on the mechanical behaviour of a clay. Int. J. Numer. Anal. Methods Geomech. 28, 209–228 (2004)Google Scholar
  91. 91.
    Burghignoli, A., Desideri, A., Miliziano, S.: A laboratory study on the thermomechanical behaviour of clayey soils. Can. Geotech. J. 37, 764–780 (2000)Google Scholar
  92. 92.
    Tanaka, N., Graham, J., Crilly, T.: Stress-strain behaviour of reconstituted illitic clay at different temperatures. Eng. Geol. 47, 339–350 (1997)Google Scholar
  93. 93.
    Romero, E., Gens, A., Lloret, A.: Suction effects on a compacted clay under non-isothermal conditions. Géotechnique 53(1), 65–81 (2003)Google Scholar
  94. 94.
    Hueckel, T., Pellegrini, R., Del Olmo, C.: A constitutive study of thermo-elasto-plasticity of deep carbonatic clays. Int. J. Numer. Anal. Methods Geomech. 22, 549–574 (1998)zbMATHGoogle Scholar
  95. 95.
    Hueckel, T., Baldi, G.: Thermoplasticity of saturated clays: experimental constitutive study. J. Geotech. Eng. ASCE 116(12), 1778–1796 (1990)Google Scholar
  96. 96.
    Lingau, B.E., Graham, J., Yarechewski, D., Tanaka, N., Gray, M.N.: Effects of temperature on strength and compressibility of sand-bentonite buffer. Eng. Geol. 41, 103–115 (1996)Google Scholar
  97. 97.
    Abuel-Naga, H.M., Bergado, D.T., Bouazza, A., Pender, M.: Thermomechanical model for saturated clays. Géotechnique 59(3), 273–278 (2009)Google Scholar
  98. 98.
    De Bruyn, D., Thimus, J.F.: The influence of temperature on mechanical characteristics of Boom clay: the results of an initial laboratory programme. Eng. Geol. 41, 117–126 (1996)Google Scholar
  99. 99.
    Houston, S.L., Houston, W.N., Williams, N.D.: Thermo-mechanical behaviour of seafloor sediments. J. Geotech. Eng. ASCE 111(11), 1249–1263 (1985)Google Scholar
  100. 100.
    Kuntiwattanakul, P., Towhata, I., Ohishi, K., Seko, I.: Temperature effects on undrained shear characteristics of clay. Soils Found. 35(1), 147–162 (1995)Google Scholar
  101. 101.
    Khalili, N., Uchaipichat, A., Javadi, A.A.: Skeletal thermal expansion coefficient and thermo-hydro-mechanical constitutive relations for saturated porous media. Mech. Mater. 42, 593–598 (2010)Google Scholar
  102. 102.
    Del Olmo, C., Fioravante, V., Gera, F., Hueckel, T., Mayor, J.C., Pellegrini, R.: Thermomechanical properties of deep argillaceous formations. Eng. Geol. 41, 87–101 (1996)Google Scholar
  103. 103.
    Sultan, N., Delage, P., Cui, Y.J.: Temperature effects on the volume change behaviour of Boom clay. Eng. Geol. 64, 135–145 (2002)Google Scholar
  104. 104.
    Aversa, S., Evangelista, A.: Thermal expansion of Neapolitan yellow tuff. Rock Mech. Rock Eng. 26(4), 281–306 (1993)Google Scholar
  105. 105.
    Baldi, G., Hueckel, T., Pellegrini, R.: Thermal volume changes of the mineral - water system in low-porosity clay soils. Can. Geotech. J. 25, 807–825 (1988)Google Scholar
  106. 106.
    Demars, K.R., Charles, R.D.: Soil volume changes induced by temperature cycling. Can. Geotech. J. 19, 188–194 (1982)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of ScienceCharles UniversityPragueCzech Republic

Personalised recommendations