Hypoplastic Model for Clay

  • David MašínEmail author
Part of the Springer Series in Geomechanics and Geoengineering book series (SSGG)


In this chapter, a rate independent hypoplastic model for clays, formulated by Mašín [1], is described. It is based on an explicit asymptotic state boundary surface approach, which has been introduced in Chap.  4. The model, in its basic form, requires specification of five parameters \(\varphi _c\), N, \(\lambda ^*\), \(\kappa ^*\) and \(\nu \). These are standard critical state soil mechanics parameters, which are equivalent (but not identical) to the parameters of the Modified Cam-clay model [2]. Advanced parameters are also introduced which allow for finer tuning of the model fit to experimental data. Calibration procedure and the effect of individual parameters on the model response are introduced in this chapter.


  1. 1.
    Mašín, D.: Clay hypoplasticity with explicitly defined asymptotic states. Acta Geotechnica 8(5), 481–496 (2013)CrossRefGoogle Scholar
  2. 2.
    Roscoe, K.H., Burland, J.B.: On the generalised stress-strain behaviour of wet clay. In: Heyman, J., Leckie, F.A. (eds.) Engineering Plasticity, pp. 535–609. Cambridge University Press, Cambridge (1968)Google Scholar
  3. 3.
    Mašín, D.: Clay hypoplasticity model including stiffness anisotropy. Géotechnique 64(3), 232–238 (2014)CrossRefGoogle Scholar
  4. 4.
    Mašín, D., Rott, J.: Small strain stiffness anisotropy of natural sedimentary clays: review and a model. Acta Geotechnica 9(2), 299–312 (2014)CrossRefGoogle Scholar
  5. 5.
    Mašín, D.: A hypoplastic constitutive model for clays. Int. J. Numer. Anal. Methods Geomech. 29(4), 311–336 (2005)CrossRefGoogle Scholar
  6. 6.
    Matsuoka, H., Nakai, T.: Stress-deformation and strength characteristics of soil under three different principal stresses. Proc. Jpn. Soc. Civil Eng. 232, 59–70 (1974)CrossRefGoogle Scholar
  7. 7.
    Jáky, J.: Pressures in silos. In: Proceedings of 2nd International Conference Soil Mechanics, vol. 1, pp. 103–107. Rotterdam (1948)Google Scholar
  8. 8.
    Wood, D.M.: Some aspects of the mechanical behaviour of kaolin under truly triaxial conditions of stress and strain. Ph.D. thesis, University of Cambridge (1974)Google Scholar
  9. 9.
    Bardet, J.P.: Lode dependences for isotropic pressure-sensitive elastoplastic materials. J. Appl. Mech. 57, 498–506 (1990)CrossRefGoogle Scholar
  10. 10.
    Kirkgard, M.M., Lade, P.V.: Anisotropic three-dimmensional behaviour of a normally consolidated clay. Can. Geotech. J. 30, 848–858 (1993)CrossRefGoogle Scholar
  11. 11.
    Callisto, L., Calabresi, G.: Mechanical behaviour of a natural soft clay. Géotechnique 48(4), 495–513 (1998)CrossRefGoogle Scholar
  12. 12.
    Henkel, D.J.: The effect of overconsolidation on the behaviour of clays during shear. Géotechnique 6, 139–150 (1956)CrossRefGoogle Scholar
  13. 13.
    Svoboda, T., Mašín, D., Boháč, J.: Class A predictions of a NATM tunnel in stiff clay. Comput. Geotech. 37(6), 817–825 (2010)CrossRefGoogle Scholar
  14. 14.
    Herle, I., Mašín, D., Kostkanová, V., Karcher, C., Dahmen, D.: Experimental investigation and theoretical modelling of soft soils from mining deposits. In: Chung, C.K., Jung, Y.H., Kim, H.K., Lee, J.S., Kim, D.S. (eds.) Proceedings of 5th International Symposium on Deformation Characteristics of Geomaterials, Seoul, Korea, vol. 2, pp. 858–864 (2011)Google Scholar
  15. 15.
    Hight, D.W., Gasparre, A., Nishimura, S., Minh, N.A., Jardine, R.J., Coop, M.R.: Characteristics of the london clay from the Terminal 5 site at Heathrow airport. Géotechnique 57(1), 3–18 (2007)CrossRefGoogle Scholar
  16. 16.
    Mašín, D.: Double structure hydromechanical coupling formalism and a model for unsaturated expansive clays. Eng. Geol. 165, 73–88 (2013)CrossRefGoogle Scholar
  17. 17.
    Hattab, M., Hicher, P.Y.: Dilating behaviour of overconsolidated clay. Soils Found. 44(4), 27–40 (2004)CrossRefGoogle Scholar
  18. 18.
    Mašín, D., Boháč, J., Tůma, P.: Modelling of a deep excavation in a silty clay. In: Proceedings of 15th European Conference on Soil Mechanics and Geotechnical Engineering, vol. 3, pp. 1509–1514 (2011)Google Scholar
  19. 19.
    Mašín, D.: Laboratory and Numerical Modelling of Natural Clays. M. Phil. Thesis, City University, London (2004)Google Scholar
  20. 20.
    Huang, W.X., Wu, W., Sun, D.A., Sloan, S.: A simple hypoplastic model for normally consolidated clay. Acta Geotechnica 1(1), 15–27 (2006)CrossRefGoogle Scholar
  21. 21.
    Mašín, D., Herle, I.: Improvement of a hypoplastic model to predict clay behaviour under undrained conditions. Acta Geotechnica 2(4), 261–268 (2007)CrossRefGoogle Scholar
  22. 22.
    Mašín, D.: A hypoplastic constitutive model for clays with meta-stable structure. Can. Geotech. J. 44(3), 363–375 (2007)CrossRefGoogle Scholar
  23. 23.
    Mašín, D., Tamagnini, C., Viggiani, G., Costanzo, D.: Directional response of a reconstituted fine grained soil. Part II: performance of different constitutive models. Int. J. Numer. Anal. Methods Geomech. 30(13), 1303–1336 (2006)CrossRefGoogle Scholar
  24. 24.
    Gasparre, A.: Advanced laboratory characterisation of London Clay. Ph.D. thesis, University of London, Imperial College of Science, Technology and Medicine (2005)Google Scholar
  25. 25.
    Mašín, D.: 3D modelling of a NATM tunnel in high \(K_0\) clay using two different constitutive models. J. Geotech. Geoenviron. Eng. ASCE 135(9), 1326–1335 (2009)CrossRefGoogle Scholar
  26. 26.
    Hájek, V., Mašín, D., Boháč, J.: Capability of constitutive models to simulate soils with different OCR using a single set of parameters. Comput. Geotech. 36(4), 655–664 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of ScienceCharles UniversityPragueCzech Republic

Personalised recommendations