Advertisement

Tensorial Hypoplastic Models

  • David MašínEmail author
Chapter
Part of the Springer Series in Geomechanics and Geoengineering book series (SSGG)

Abstract

In Chap.  3 of this book, the basic principles of hypoplastic models were described. Obviously, for the models to be applicable in numerical modelling tools, models must be formulated in full tensorial notation. To explain the mathematical structure of hypoplastic models, their historical development is traced back in this chapter, starting with the trial-and-error models based on rational mechanics and ending with approaches explicitly enabling the incorporation of the most important features of soil behaviour into the model structure.

References

  1. 1.
    Kolymbas, D.: A generalised hypoelastic constitutive law. In: Proceedings of the \(11^{th}\) International Conference on Soil Mechanics and Foundation Engineering, San Francisco, p. 2626 (1985)Google Scholar
  2. 2.
    Kolymbas, D.: Computer-aided design of constitutive laws. Int. J. Numer. Anal. Methods Geomech. 15, 593–604 (1991)CrossRefGoogle Scholar
  3. 3.
    Kolymbas, D.: An outline of hypoplasticity. Arch. Appl. Mech. 61, 143–151 (1991)zbMATHGoogle Scholar
  4. 4.
    Truesdell, C., Noll, W.: The Non-Linear Field Theories of Mechanics, pp. 1–541. Springer, Berlin (1965)zbMATHGoogle Scholar
  5. 5.
    Niemunis, A.: Extended hypoplastic models for soils. Habilitation thesis, Ruhr-University, Bochum (2003)Google Scholar
  6. 6.
    Wang, C.C.: A new representation theorem for isotropic tensor functions. Arch. Rat. Mech. Anal. 36, 166–223 (1970)CrossRefGoogle Scholar
  7. 7.
    Wu, W.: Hypoplastizität als mathematisches Modell zum mechanischen Verhalten granularer Stoffe. Publication Series of the Institute of Soil Mechanics and Rock Mechanics, No. 129, Karlsruhe University (1992)Google Scholar
  8. 8.
    Wu, W.: On a simple critical state model for sand. In: Pande, G.N., Pietruszczak, S. (eds.) Proceedings of the \(7^{th}\) International Symposium Numerical Models in Geomechanics, NUMOG VII, pp. 47–52. Balkema, Rotterdam (1999)Google Scholar
  9. 9.
    Lanier, J., Caillerie, D., Chambon, R., Viggiani, G., Bésuelle, P., Desrues, J.: A general formulation of hypoplasticity. Int. J. Numer. Anal. Methods Geomech. 28, 1461–1478 (2004)CrossRefGoogle Scholar
  10. 10.
    Wu, W., Bauer, E.: A simple hypoplastic constitutive model for sand. Int. J. Numer. Anal. Methods Geomech. 18, 833–862 (1994)CrossRefGoogle Scholar
  11. 11.
    Gudehus, G.: A comprehensive constitutive equation for granular materials. Soils Found. 36(1), 1–12 (1996)CrossRefGoogle Scholar
  12. 12.
    Wu, W., Bauer, E., Kolymbas, D.: Hypoplastic constitutive model with critical state for granular materials. Mech. Mater. 23, 45–69 (1996)CrossRefGoogle Scholar
  13. 13.
    Kolymbas, D., Herle, I., von Wolffersdorff, P.A.: Hypoplastic constitutive equation with internal variables. Int. J. Numer. Anal. Methods Geomech. 19, 415–436 (1995)CrossRefGoogle Scholar
  14. 14.
    Bauer, E.: Calibration of a comprehensive constitutive equation for granular materials. Soils Found. 36(1), 13–26 (1996)CrossRefGoogle Scholar
  15. 15.
    Herle, I., Gudehus, G.: Determination of parameters of a hypoplastic constitutive model from properties of grain assemblies. Mech. Cohesive-Frict. Mater. 4, 461–486 (1999)CrossRefGoogle Scholar
  16. 16.
    von Wolffersdorff, P.A.: A hypoplastic relation for granular materials with a predefined limit state surface. Mech. Cohesive-Frict. Mater. 1(3), 251–271 (1996)CrossRefGoogle Scholar
  17. 17.
    Matsuoka, H., Nakai, T.: Stress-deformation and strength characteristics of soil under three different principal stresses. Proc. Jpn. Soc. Civ. Eng. 232, 59–70 (1974)CrossRefGoogle Scholar
  18. 18.
    Niemunis, A., Nübel, K., Karcher, C.: The consistency conditions for density limits of hypoplastic constitutive law. Task Q. 4(3), 412–420 (2000)Google Scholar
  19. 19.
    Herle, I., Kolymbas, D.: Hypoplasticity for soils with low friction angles. Comput. Geotech. 31(5), 365–373 (2004)CrossRefGoogle Scholar
  20. 20.
    Mašín, D.: A hypoplastic constitutive model for clays. Int. J. Numer. Anal. Methods Geomech. 29(4), 311–336 (2005)CrossRefGoogle Scholar
  21. 21.
    Wu, W., Niemunis, A.: Failure criterion, flow rule and dissipation function derived from hypoplasticity. Mech. Cohesive-Frict. Mater. 1, 145–163 (1996)CrossRefGoogle Scholar
  22. 22.
    Wu, W., Niemunis, A.: Beyond failure in granular materials. Int. J. Numer. Anal. Methods Geomech. 21, 153–175 (1997)CrossRefGoogle Scholar
  23. 23.
    Butterfield, R.: A natural compression law for soils. Géotechnique 29(4), 469–480 (1979)CrossRefGoogle Scholar
  24. 24.
    Mašín, D., Herle, I.: State boundary surface of a hypoplastic model for clays. Comput. Geotech. 32(6), 400–410 (2005)CrossRefGoogle Scholar
  25. 25.
    Mašín, D.: Hypoplastic Cam-clay model. Géotechnique 62(6), 549–553 (2012)CrossRefGoogle Scholar
  26. 26.
    Mašín, D.: Clay hypoplasticity with explicitly defined asymptotic states. Acta Geotech. 8(5), 481–496 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of ScienceCharles UniversityPragueCzech Republic

Personalised recommendations