Advertisement

Classification of Archaeological Assemblages According to the Chaîne opératoire Concept: Functional and Sociological Characterization

  • Valentine Roux
Chapter

Abstract

After the mastery of the technological interpretation of sherds or vessels comes the classification stage of ceramic assemblages. The principles of ceramic assemblage technical classification are outlined in Chap. 4. These principles advocate a classification of all the sherds in a given assemblage according to technical processes and finished products successively. This is contrary to usual practices. The aim is to highlight traditions, that is to say, ways of doing a given functional range of containers. Once this classification is established, the challenge is to evaluate whether the variability of the chaînes opératoires is functional or sociological and whether sociological variability is simple or complex. The study of the function of vessels relies on shapes and physico-chemistry. The study of sociological variability leads to an analysis of the sociological landscape and the function of the sites at a macro-regional level.

Keywords

Classification of assemblages Ceramic tradition Ceramic function Ceramic variability Ceramic sociology 

References

  1. Ard, V. (2013). Ceramic traditions and cultural identities: West-Central France during the late Neolithic II period (c. 3400–2900 cal. BC). Oxford Journal of Archaeology, 32, 367–389.CrossRefGoogle Scholar
  2. Ard, V. (2014). Produire et échanger au Néolithique. Traditions céramiques entre Loire et Gironde au IVe millénaire avant JC. Documents Préhistoriques 33. Paris: CTHS.Google Scholar
  3. Ard, V., Weller, O. (2012). Les vases de “type Champ-Durand”: témoins d’une exploitation du sel au Néolithique récent dans le Marais poitevin. In R. Joussaume (Ed.), L’enceinte néolithique de Champ-Durand à Nieul-sur-l’Autise (Vendée) (pp. 319–343). Mémoire de la Société de recherches archéologiques de Chauvigny 44. Chauvigny: Association des Publications Chauvinoises – A.P.C.Google Scholar
  4. Arnold, P. J., III. (1991). Domestic ceramic production and spatial organization: A Mexican case study in ethnoarchaeology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  5. Arthur, J. (2003). Brewing beer: Status, wealth and ceramic use alteration among the Gamo of South-Western Ethiopia. World Archaeology, 34, 516–528.CrossRefGoogle Scholar
  6. Baldi, J. S. (2015). Aux portes de la Cité: systèmes céramiques et organisation sociale en Mésopotamie du Nord aux 5ème et 4ème millénaires. Paris: Université de Paris I, Panthéon-Sorbonne. PhD.Google Scholar
  7. Balfet, H. (1965). Ethnographical observations in North Africa and archaeological interpretation: The pottery of the Maghreb. In F. R. Matson (Ed.), Ceramics and man (pp. 161–177). New York: Viking Fund Publication in Anthropology.Google Scholar
  8. Balfet, H., Fauvet-Berthelot, M.-F., & Monzon, S. (1983). Pour la normalisation de la description des poteries. Paris: Editions du CNRS.Google Scholar
  9. Bellina, B., Epinal, G., & Favereau, A. (2011). Caractérisation préliminaire des poteries marqueurs d’échanges en Mer de Chine Méridionale à la fin de la préhistoire. Archipel, 84, 7–33.CrossRefGoogle Scholar
  10. Bellina-Pryce, B., & Silapanth, P. (2006). Weaving cultural identities on trans-Asiatic networks: Upper Thai-Malay Peninsula-an early socio-political landscape. Bulletin de l’Ecole française d’Extrême-Orient, 93, 257–293.CrossRefGoogle Scholar
  11. Binder, D., Convertini, F., Manen, C., & Sénépart, I. (2010). Les productions céramiques du Néolithique ancien : proposition d’un protocole d’analyse. In C. Manen, F. Convertini, & D. Binder (Ed.), Premières sociétés paysannes de Méditerranée occidentale: structure des premières productions céramiques (pp. 29–42). Mémoires de La Société Préhistorique Française 51. Paris: Société Préhistorique Française.Google Scholar
  12. Bocherens, H. (1997). Signatures isotopiques dans le collagène des os anciens isotopic: Molécules anciennes. Problèmes biologiques. Problèmes historiques. Comptes rendus des séances de la Société de biologie et de ses filiales, 191, 493–510.Google Scholar
  13. Bogucki, P. I. (1984). Ceramic sieves of the Linear Pottery Culture and their economic implications. Oxford Journal of Archaeology, 3, 15–30.CrossRefGoogle Scholar
  14. Bortolini, E. (2016). Typology and classification. In A. M. W. Hunt (Ed.), The Oxford handbook of archaeological ceramic analysis (pp. 651–670). Oxford: Oxford University Press.Google Scholar
  15. Bourgeois, G., & Gouin, P. (1995). Résultats d’une analyse de traces organiques fossiles dans une “faisselle” harappéenne. Paléorient, 125–128.Google Scholar
  16. Bouvet, P. (2012). Interactions culturelles entre l’Asie du Sud-Est et l’Inde aux 4ème-2ème siècle avt J.-C.: étude technologique des céramiques de Khao Sam Kaeo (Thaïlande péninsulaire, province de Chumphon). Nanterre: Université de Paris Nanterre. PhD.Google Scholar
  17. Bowser, B. J. (2000). From pottery to politics: An ethnoarchaeological study of political factionalism, ethnicity, and domestic pottery style in the Ecuadorian Amazon. Journal of Archaeological Method and Theory, 7(3), 219–248.CrossRefGoogle Scholar
  18. Bowser, J. B., & Patton, J. Q. (2008). Learning and transmission of pottery style: Women’s life histories and communities of practice in the Ecuadorian Amazon. In M. T. Stark, B. J. Bowser, & L. Horne (Eds.), Cultural transmission and material culture. Breaking down boundaries (pp. 105–129). Tucson: The University of Arizona Press.Google Scholar
  19. Caneva, I., & Marks, A. (1990). More on the Shaqadud pottery: Evidence for Saharo-nilotic connections during the 6th-4th millenium BC. Archéologie du Nil moyen, 4, 11–35.Google Scholar
  20. Charters, S., Evershed, R. P., Blinkhorn, P. W., & Denham, V. (1995). Evidence for the mixing of fats and waxes in archaeological ceramics. Archaeometry, 37, 113–127.CrossRefGoogle Scholar
  21. Colombini, M. P., Modugno, F., & Ribechini, E. (2005). Organic mass spectrometry in archaeology: Evidence for Brassicaceae seed oil in Egyptian ceramic lamps. Journal of Mass Spectrometry, 40, 890–898.CrossRefGoogle Scholar
  22. Condamin, J., & Formenti, F. (1978). Détection du contenu d’amphores antiques (huiles, vin). Etude méthodologique. Revue d’Archéométrie. Bulletin de Liaison du Groupe des Méthodes Physiques et Chimiques de l’Archéologie Rennes: 43–58.CrossRefGoogle Scholar
  23. Condamin, J., Formenti, F., Metais, M. O., Michel, M., & Blond, P. (1976). The application of gas chromatography to the tracing of oil in ancient amphorae. Archaeometry, 18, 195–201.CrossRefGoogle Scholar
  24. Copley, M. S., Rose, P. J., Clapham, A., Edwards, D. N., Horton, M. C., & Evershed, R. P. (2001). Processing palm fruits in the Nile Valley-biomolecular evidence from Qasr Ibrim. Antiquity, 75, 538–542.CrossRefGoogle Scholar
  25. Copley, M. S., Berstan, R., Dudd, S. N., Docherty, G., Mukherjee, A. J., Straker, V., Payne, S., & Evershed, R. P. (2003). Direct chemical evidence for widespread dairying in prehistoric Britain. Proceedings of the National Academy of Sciences, 100, 1524–1529.CrossRefGoogle Scholar
  26. Copley, M. S., Hansel, F. A., Sadr, K., & Evershed, R. P. (2004). Organic residue evidence for the processing of marine animal products in pottery vessels from the pre-colonial archaeological site of Kasteelberg D east, South Africa. South African Journal of Science, 100, 279–288.Google Scholar
  27. Correa-Ascencio, M., & Evershed, R. P. (2014). High throughput screening of organic residues in archaeological potsherds using direct acidified methanol extraction. Analytical Methods, 6, 1330–1340.CrossRefGoogle Scholar
  28. Cotte, J. (1917). Analyses de résidus organiques de l’époque néolithique (Caverne de l’Adaouste). Bulletins et Mémoires de la Société d’anthropologie de Paris, 8, 66–115.CrossRefGoogle Scholar
  29. Craig, O. E., & Collins, M. J. (2002). The removal of protein from mineral surfaces: Implications for residue analysis of archaeological materials. Journal of Archaeological Science, 29, 1077–1082.CrossRefGoogle Scholar
  30. Craig, O. E., Mulville, J., Pearson, M. P., Sokol, R., Gelsthorpe, K., Stacey, R., & Collins, M. (2000). Detecting milk proteins in ancient pots. Nature, 408, 312–312.CrossRefGoogle Scholar
  31. Craig, O. E., Forster, M., Andersen, S. H., Koch, E., Crombé, P., Milner, N. J., Stern, B., Bailey, G. N., & Heron, C. P. (2007). Molecular and istotopic demonstration of the processing of aquatic products in northern european prehistoric pottery. Archaeometry, 49, 135–152.CrossRefGoogle Scholar
  32. Craig, O. E., Allen, R. B., Thompson, A., Stevens, R. E., Steele, V. J., & Heron, C. (2012). Distinguishing wild ruminant lipids by gas chromatography/combustion/isotope ratio mass spectrometry. Rapid Communications in Mass Spectrometry, 26, 2359–2364.CrossRefGoogle Scholar
  33. Craig, O. E., Saul, H., Lucquin, A., Nishida, Y., Taché, K., Clarke, L., Thompson, A., Altoft, D. T., Uchiyama, J., & Ajimoto, M. (2013). Earliest evidence for the use of pottery. Nature, 496, 351–354.CrossRefGoogle Scholar
  34. Crane, E. (1983). The archaeology of beekeeping. London: Duckworth.Google Scholar
  35. Crown, P. L., & Hurst, W. J. (2009). Evidence of cacao use in the Prehispanic American Southwest. Proceedings of the National Academy of Sciences, 106, 2110–2113.CrossRefGoogle Scholar
  36. David, N., & Kramer, C. (2001). Ethnoarchaeology in action. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  37. David, N., Sterner, J., & Gavua, K. (1988). Why pots are decorated. Current Anthropology, 29(3), 365–389.CrossRefGoogle Scholar
  38. de Ceuninck, G. (1994). Forme, fonction, ethnie: approche ethnoarchéologique des céramiques du delta inférieur du Niger (Mali). In D. Binder & J. Courtin (Eds.), Terre cuite et Société. La céramique, document technique, économique, culturel (pp. 161–178). XIVe Rencontres Internationales d’Archéologie et d’Histoire d’Antibes. Juan-les-Pins: Editions APDCA.Google Scholar
  39. Decavallas, O. (2007). Beeswax in Neolithic perforated sherds from the Northern Aegean: New economic and functional implications. In C. Mee & J. Renard (Eds.), Cooking up the past. Food and culinary practrices in the Neolithic and Bronze Age Aegean (pp. 148–157). Oxford: Oxbow Books.Google Scholar
  40. Dietler, M., & Herbich, I (1994). Ceramics and ethnic identity. Ethnoarchaeological observations on the distribution of pottery styles and the relationship between the social contexts of production and consumption. In J. Courtin & D. Binder (Ed.), Terre cuite et Société. La céramique, document technique, économique, culturel (pp. 459–472). XIVe Rencontres Internationales d’Archéologie et d’Histoire d’Antibes. Juan-les-Pins: Editions APDCA.Google Scholar
  41. Dudd, S. N., & Evershed, R. P. (1998). Direct demonstration of milk as an element of archaeological economies. Science, 282, 1478–1481.CrossRefGoogle Scholar
  42. Dudd, S. N., Evershed, R. P., & Gibson, A. M. (1999). Evidence for varying patterns of exploitation of animal products in different prehistoric pottery traditions based on lipids preserved in surface and absorbed residues. Journal of Archaeological Science, 26, 1473–1482.CrossRefGoogle Scholar
  43. Dunne, J., Evershed, R. P., Salque, M., Cramp, L., Bruni, S., Ryan, K., Biagetti, S., & di Lernia, S. (2012). First dairying in green Saharan Africa in the fifth millennium BC. Nature, 486, 390–394.CrossRefGoogle Scholar
  44. Duplaix-Rata, A. (1997). Les dépôts alimentaires carbonisés. In Les sites littoraux néolithiques de Clairvaux-les-Lacs et de Chalain (Jura): Chalain station 3, 3200–2900 av. J.-C. III, ed. Pierre Pétrequin. Paris: Editions de la MSH.Google Scholar
  45. Eglinton, G., Logan, G. A., Ambler, R. P., Boon, J. J., & Perizonius, W. R. K. (1991). Molecular preservation and discussion. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 333, 315–328.CrossRefGoogle Scholar
  46. Evershed, R. P. (2008). Organic residue analysis in archaeology: The archaeological biomarker revolution. Archaeometry, 50, 895–924.CrossRefGoogle Scholar
  47. Evershed, R. P., & Tuross, N. (1996). Proteinaceous material from potsherds and associated soils. Journal of Archaeological Science, 23, 429–436.CrossRefGoogle Scholar
  48. Evershed, R. P., Heron, C., & Goad, L. J. (1990). Analysis of organic residues of archaeological origin by high-temperature gas chromatography and gas chromatography-mass spectrometry. Analyst, 115, 1339–1342.CrossRefGoogle Scholar
  49. Evershed, R. P., Heron, C., Charters, S., & Goad, L. J. (1991a). The survival of food residues: New methods of analysis, interpretation and application. In Proceedings of the British Academy (Vol. 77, pp. 187–208).Google Scholar
  50. Evershed, R. P., Heron, C., & Goad, L. (1991b). Epicuticular wax components preserved in potsherds as chemical indicators of leafy vegetables in ancient diets. Antiquity, 65, 540–544.CrossRefGoogle Scholar
  51. Evershed, R. P., Charters, S., Heron, C., & Goad, L. J. (1992). Chemical analysis of organic residues in ancient pottery: Methodological guidelines and applications. In R. White & H. Page (Eds.), Organic residues in archaeology: Their identification and analysis (pp. 11–25). London: UKIC Archaeology Section.Google Scholar
  52. Evershed, R. P., Arnot, K. I., Collister, J., Eglinton, G., & Charters, S. (1994). Application of isotope ratio monitoring gas chromatography–mass spectrometry to the analysis of organic residues of archaeological origin. Analyst, 119, 909–914.CrossRefGoogle Scholar
  53. Evershed, R. P., Mottram, H. R., Dudd, S. N., Charters, S., Stott, A. W., Lawrence, G. J., Gibson, A. M., Conner, A., Blinkhorn, P. W., & Reeves, V. (1997a). New criteria for the identification of animal fats preserved in archaeological pottery. Naturwissenschaften, 84, 402–406.CrossRefGoogle Scholar
  54. Evershed, R. P., Vaughan, S., Dudd, S. N., & Soles, J. (1997b). Fuel for thought? Beeswax in lamps and conical cups from Late Minoan Crete. Fuel, 71, 979–979.Google Scholar
  55. Evershed, R. P., Dudd, S. N., Copley, M. S., Berstan, R., Stott, A. W., Mottram, H., Buckley, S. A., & Crossman, Z. (2002). Chemistry of archaeological animal fats. Accounts of Chemical Research, 35, 660–668.CrossRefGoogle Scholar
  56. Evershed, R. P., Dudd, S. N., Anderson-Stojanovic, V., & Gebhard, E. R. (2003). New chemical evidence for the use of combed ware pottery vessels as beehives in ancient Greece. Journal of Archaeological Science, 30, 1–12.CrossRefGoogle Scholar
  57. Evershed, R. P., Copley, M. S., Dickson, L., & Hansel, F. A. (2008a). Experimental evidence for the processing of marine animal products and other commodities containing polyunsaturated fatty acids in pottery vessels. Archaeometry, 50, 101–113.CrossRefGoogle Scholar
  58. Evershed, R. P., Payne, S., Sherratt, A. G., Copley, M. S., Coolidge, J., Urem-Kotsu, D., Kotsakis, K., et al. (2008b). Earliest date for milk use in the Near East and southeastern Europe linked to cattle herding. Nature, 455, 528–531.CrossRefGoogle Scholar
  59. Gallay, A. (2012a). Potières du Sahel: A la découverte des traditions céramiques de la boucle du Niger. Gollion, Suisse: Infolio.Google Scholar
  60. Gallay, A. (2012b). Utilisation de la céramique d’origine somono et peul chez les pêcheurs bozo du Delta intérieur du Niger (Mali). Afrique, Archéologie, Arts, 8, 45–84.CrossRefGoogle Scholar
  61. Gallay, A. (2013). Biens de prestige et richesse en Afrique de l’Ouest: un essai de définition. In C. Baroin & C. Michel (Eds.), Richesse et sociétés (pp. 25–36). Colloques de La Maison de l’Archéologie et de l’ethnologie René Ginouvès 9. Paris: Editions de Boccard.Google Scholar
  62. Gallay, A., & de Ceuninck, G. (1998). Les jarres de mariage décorées du Delta intérieur du Niger (Mali): approche ethnoarchéologique d’un “bien de prestige.” In B. Fritsch, M. Maute, J. Müller, & C. Wolf (Eds.), Tradition und Innovation: prëhistorische Archëologie als historische Wissenschaft : Festchrift für Christian Strahm (pp. 13–30). Rahden: M. Leidorf.Google Scholar
  63. Gallay, A., Huysecom, E., Honegger, M., & Mayor, A. (1990). Hamdallahi, Capitale de l’Empire Peul du Massina, Mali: première fouille archéologique, études historiques et ethnoarchéologiques. Sonderschriften Des Frobenius-Institut 9. Stuttgart: F. Steiner.Google Scholar
  64. Gallin, A. (2002). Proposition d’une étude stylistique de la céramique imprimée de Kobadi. Définition de classes morphométriques des vases et analyse de la composition de leurs décors. Préhistoires Méditerranéennes: 117–134.Google Scholar
  65. Gallin, A. (2011). Les styles céramiques de Kobadi : analyse comparative et implications chronoculturelles au Néolithique récent du Sahel Malien. Reports in African Archaeology 1. Frankfurt am Main: Africa Magna Verlag.Google Scholar
  66. Gallin, A. (2013). CerAfIm. http://lampea.cnrs.fr/cerafim/ (accessed 14/12/2018).Google Scholar
  67. Gardin, J.-C. (1976). Code pour l’analyse des formes de poteries. Paris: Editions du CNRS.Google Scholar
  68. Gardin, J.-C. (1980). Archaeological constructs: An aspect of theoretical archaeology. Cambridge: Cambridge University Press.Google Scholar
  69. Gardin, J.-C., & Chevalier, J. (1978). Code pour l’analyse des ornements. Paris: Ed. du CNRS.Google Scholar
  70. Garnier, N., Cren-Olivé, C., Rolando, C., & Regert, M. (2002). Characterization of archaeological beeswax by electron ionization and electrospray ionization mass spectrometry. Analytical Chemistry, 74, 4868–4877.CrossRefGoogle Scholar
  71. Garnier, N., Richardin, P., Cheynier, V., & Regert, M. (2003). Characterization of thermally assisted hydrolysis and methylation products of polyphenols from modern and archaeological vine derivatives using gas chromatography–mass spectrometry. Analytica Chimica Acta, 493, 137–157.CrossRefGoogle Scholar
  72. Garnier, N., Rolando, C., Høtje, J. M., & Tokarski, C. (2009). Analysis of archaeological triacylglycerols by high resolution nanoESI, FT-ICR MS and IRMPD MS/MS: Application to 5th century BC–4th century AD oil lamps from Olbia (Ukraine). International Journal of Mass Spectrometry, 284, 47–56.CrossRefGoogle Scholar
  73. Gifford, J. C. (1960). The type-variety method of ceramic classification as an indicator of cultural phenomena. American Antiquity, 25, 341–347.CrossRefGoogle Scholar
  74. Gilboa, A., Karasik, A., Sharon, I., & Smilansky, U. (2004). Towards computerized typology and classification of ceramics. Journal of Archaeological Science, 31, 681–694.CrossRefGoogle Scholar
  75. Goldenberg, L., Neumann, R., & Weiner, S. (2014). Microscale distribution and concentration of preserved organic molecules with carbon–carbon double bonds in archaeological ceramics: Relevance to the field of residue analysis. Journal of Archaeological Science, 42, 509–518.CrossRefGoogle Scholar
  76. Gomart, L. (2014). Traditions techniques et production céramique au néolithique ancien: étude de huit sites rubanés du Nord Est de la France et de Belgique. Leiden: Sidestone Press.Google Scholar
  77. Gomart, L., & Burnez-Lanotte, L. (2012). Techniques de façonnage, production céramique et identité de potiers: une approche technologique de la céramique de style non Rubané du site du Staberg à Rosmeer (Limbourg, Belgique). Bulletin de la Société Préhistorique Française, 109, 231–250.CrossRefGoogle Scholar
  78. Goren, Y. (1995). Shrines and ceramics in chalcolithic Israel: The view through the petrographic microscope. Archaeometry, 37(2), 287–305.CrossRefGoogle Scholar
  79. Gosselain, O. (2008). Mother Bella was not a Bella. Inherited and transformed traditions in Southwestern Niger. In M. T. Stark, B. Bower, & L. Horne (Eds.), Cultural transmission and material culture. Breaking down boundaries (pp. 150–177). Tucson: Arizona University Press.Google Scholar
  80. Gosselain, O. (2011). Pourquoi le décorer? Quelques observations sur le décor céramique en Afrique. Azania: Archaeological Research in Africa, 46, 3–19.CrossRefGoogle Scholar
  81. Gosselain, O., Haour, A., MacDonald, K., & Manning, K. (2010). Introduction. In A. Haour, K. Manning, N. Arazi, O. Gosselain, S. Guèye, D. Keita, A. Livingstone-smith, et al. (Eds.), African pottery roulettes past and present: Techniques, identification and distribution (pp. 1–34). Oxford: Oxbow Books.Google Scholar
  82. Gouin, P. (1994). Sources, principes et techniques de l’archéologie des laitages. In D. Binder & J. Courtin (Ed.), Terre cuite et Société. La céramique, document technique, économique, culturel (pp. 147–160). XIVe Rencontres Internationales d’Archéologie et d’Histoire d’Antibes. Juan-les-Pins: Editions APDCA.Google Scholar
  83. Guasch-Jané, M. R. (2011). The meaning of wine in Egyptian tombs: The three amphorae from Tutankhamun’s burial chamber. Antiquity, 85, 851–858.CrossRefGoogle Scholar
  84. Guasch-Jané, M. R., Ibern-Gómez, M., Andrés-Lacueva, C., Jáuregui, O., & Lamuela-Raventós, R. M. (2004). Liquid chromatography with mass spectrometry in tandem mode applied for the identification of wine markers in residues from ancient Egyptian vessels. Analytical Chemistry, 76, 1672–1677.CrossRefGoogle Scholar
  85. Guasch-Jané, M. R., Andrés-Lacueva, C., Jáuregui, O., & Lamuela-Raventós, R. M. (2006a). The origin of the ancient Egyptian drink “Shedeh” revealed using LC/MS/MS. Journal of Archaeological Science, 33, 98–101.CrossRefGoogle Scholar
  86. Guasch-Jané, M. R., Andrés-Lacueva, C., Jáuregui, O., & Lamuela-Raventós, R. M. (2006b). First evidence of white wine in ancient Egypt from Tutankhamun’s tomb. Journal of Archaeological Science, 33, 1075–1080.CrossRefGoogle Scholar
  87. Hall, G. D., Tarka, S. M., Jr., Hurst, W. J., Stuart, D., & Adams, R. E. W. (1990). Cacao residues in ancient Maya vessels from Rio Azul, Guatemala. American Antiquity, 55, 138–143.CrossRefGoogle Scholar
  88. Hally, D. J. (1983). Use alteration of pottery surfaces: An important source of evidence for the identification of vessel function. North American Archaeologists, 4(1), 3–26.CrossRefGoogle Scholar
  89. Hansel, F. A., Copley, M. S., Madureira, L. A., & Evershed, R. P. (2004). Thermally produced w(o-alkylphenyl) alkanoic acids provide evidence for the processing of marine products in archaeological pottery vessels. Tetrahedron Letters, 45, 2999–3002.CrossRefGoogle Scholar
  90. Hegmon, M. (1998). Technology, style, and social practice: Archaeological approaches. In M. T. Stark (Ed.), The Archaeology of social boundaries (pp. 264–279). Washington, DC: Smithsonian University Press.Google Scholar
  91. Henderson, J. S., Joyce, R. A., Hall, G. R., Hurst, W. J., & McGovern, P. E. (2007). Chemical and archaeological evidence for the earliest cacao beverages. Proceedings of the National Academy of Sciences, 104, 18937–18940.CrossRefGoogle Scholar
  92. Henrickson, E. F., & McDonald, M. M. A. (1983). Ceramic form and function: An ethnographic search and an archeological application. American Anthropologist, 85, 630–643.CrossRefGoogle Scholar
  93. Herbich, I. (1987). Learning patterns, potter interaction and ceramic style among the Luo of Kenya. The African Archaeological Review, 5, 109–136.CrossRefGoogle Scholar
  94. Heron, C., & Evershed, R. P. (1993). The analysis of organic residues and the study of pottery use. Archaeological Method and Theory, 5, 247–284.Google Scholar
  95. Heron, C., Evershed, R. P., & Goad, L. J. (1991). Effects of migration of soil lipids on organic residues associated with buried potsherds. Journal of Archaeological Science, 18, 641–659.CrossRefGoogle Scholar
  96. Heron, C., Nemcek, N., Bonfield, K. M., Dixon, D., & Ottaway, B. S. (1994). The chemistry of Neolithic beeswax. Naturwissenschaften, 81, 266–269.CrossRefGoogle Scholar
  97. Hodder, I. (1982). Symbols in action. Ethnoarchaeological studies of material culture. Cambridge: Cambridge University Press.Google Scholar
  98. Houbre, A. (2013). La grammaire des décors céramiques du Néolithique ancien danubien des bassins du Rhin, de la Meuse et de la Seine: entre norme et transgression. Bulletin de la Société préhistorique française, 110, 77–103.CrossRefGoogle Scholar
  99. Hurst, W. J., Martin, R. A., Jr., Tarka, S. M., Jr., & Hall, G. D. (1989). Authentication of cocoa in Maya vessels using high-performance liquid chromatographic techniques. Journal of Chromatography A, 466, 279–289.CrossRefGoogle Scholar
  100. Hurst, W. J., Tarka, S. M., Powis, T. G., Valdez, F., & Hester, T. R. (2002). Cacao usage by the earliest Maya civilization. Nature, 418, 289–290.CrossRefGoogle Scholar
  101. Karasik, A., & Smilansky, U. (2008). 3D scanning technology as a standard archaeological tool for pottery analysis: Practice and theory. Journal of Archaeological Science, 35, 1148–1168.CrossRefGoogle Scholar
  102. Karasik, A., & Smilansky, U. (2011). Computerized morphological classification of ceramics. Journal of Archaeological Science, 38, 2644–2657.CrossRefGoogle Scholar
  103. Kobayashi, M. (1994). Use-alteration analysis of Kalinga pottery: Interior carbon deposits of cooking pots. In W. A. Longacre & J. M. Skibo (Eds.), Kalinga ethnoarchaeology: Expanding archaeological method and theory (pp. 127–168). Washington, DC: Smithsonian Institution Press.Google Scholar
  104. Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  105. Lyonnet, B. (1997). Prospections archéologiques en Bactriane orientale (1974–1978). Mémoires de la Mission archéologique française en Asie centrale 2. Paris: Ed. Recherche sur les civilisations.Google Scholar
  106. Manem, S. (2008). Etude des fondements technologiques de la culture des Duffaits (âge du Bronze moyen). Nanterre: Université de Paris Nanterre. PhD.Google Scholar
  107. Manem, S. (2010). Des habitats aux sites de rassemblement à vocation rituelle. L’âge du Bronze selon le concept de “chaîne opératoire”. Les Nouvelles de l’Archéologie: 30–36.Google Scholar
  108. Manen, C., & Salanova, L. (2010). Les impressions de coquilles marines à front denté dans les décors céramiques néolithiques. In C. Manen, F. Convertini, & D. Binder (Eds.), Premières sociétés paysannes de Méditerranée occidentale : structure des premières productions céramiques (pp. 57–64). Mémoires de La Société Préhistorique Française 51. Paris: Société Préhistorique Française.Google Scholar
  109. Marcigny, C., & Ghesquière, E. (2008). Espace rural et systèmes agraires dans l’Ouest de la France à l’âge du Bronze: quelques exemples normands. In J. Guilaine (Ed.), Villes, villages, campagnes de l’âge du Bronze (pp. 256–278). Séminaire Du Collège de France. Paris: Editions Errance.Google Scholar
  110. McGovern, P. E., & Michel, R. H. (1990). Royal purple dye: The chemical reconstruction of the ancient mediterranean industry. Accounts of Chemical Research, 23, 152–158.CrossRefGoogle Scholar
  111. Meunier, K. (2012). Styles céramiques et néolithisation dans le sud-est du Bassin parisien: une évolution Rubané, Villeneuve-Saint-Germain. Paris: CNRS éditions, INRAP.Google Scholar
  112. Miller, D. (1985). Artefacts as categories. A study of ceramic variability in Central India. Cambridge: Cambridge University Press.Google Scholar
  113. Mirabaud, S., Rolando, C., & Regert, M. (2007). Molecular criteria for discriminating adipose fat and milk from different species by nanoESI MS and MS/MS of their triacylglycerols: Application to archaeological remains. Analytical Chemistry, 79, 6182–6192.CrossRefGoogle Scholar
  114. Mottram, H. R., & Evershed, R. P. (2001). Elucidation of the composition of bovine milk fat triacylglycerols using high-performance liquid chromatography–atmospheric pressure chemical ionisation mass spectrometry. Journal of Chromatography A, 926, 239–253.CrossRefGoogle Scholar
  115. Mottram, H. R., Dudd, S. N., Lawrence, G. J., Stott, A. W., & Evershed, R. P. (1999). New chromatographic, mass spectrometric and stable isotope approaches to the classification of degraded animal fats preserved in archaeological pottery. Journal of Chromatography A, 833, 209–221.CrossRefGoogle Scholar
  116. Mottram, H. R., Crossman, Z. M., & Evershed, R. P. (2001). Regiospecific characterisation of the triacylglycerols in animal fats using high performance liquid chromatography-atmospheric pressure chemical ionisation mass spectrometry. Analyst, 126, 1018–1024.CrossRefGoogle Scholar
  117. Murillo-Barroso, M., Pryce, T. O., Bellina, B., & Martinón-Torres, M. (2010). Khao Sam Kaeo–an archaeometallurgical crossroads for trans-asiatic technological traditions. Journal of Archaeological Science, 37, 1761–1772.CrossRefGoogle Scholar
  118. Orton, C., Tyers, P., & Vince, A. (1993). Pottery in archaeology. Cambridge: Cambridge University Press.Google Scholar
  119. Philp, R. P., & Oung, J.-N. (1988). Biomarkers: Occurence, utility, and detection. Analytical Chemistry, 60, 887A–896A.Google Scholar
  120. Plog, S. (1980). Stylistic variation in prehistoric ceramics. Cambridge: Cambridge University press.CrossRefGoogle Scholar
  121. Ramón, G. (2011). The swallow potters: seasonal migratory styles in the Andes. In S. Scarcella (Ed.), Archaeological ceramics: A review of current research (pp. 160–175). BAR International Series 2193. Oxford: Archaeopress.Google Scholar
  122. Ramón, G., & Bell, M. (2013). Re-placing plainware: Production and distribution of domestic pottery, and the narration of the pre-colonial past in the Peruvian Andes. Journal of Anthropological Archaeology, 32, 595–613.CrossRefGoogle Scholar
  123. Read, D. W. (2007). Artifact classification: A conceptual and methodological approach. Walnut Creek: Left Coast Press.Google Scholar
  124. Regert, M. (2007). Elucidating pottery function using a multi-step analytical methodology combining infrared spectroscopy, mass spectrometry and chromatographic procedures. In H. Barnard & J. W. Eerkens (Ed.), Theory and practice of archaeological residue analysis (pp. 61–76). BAR International Series 1650. Oxford: Archaeopress.Google Scholar
  125. Regert, M. (2011). Analytical strategies for discriminating archeological fatty substances from animal origin. Mass Spectrometry Reviews, 30, 177–220.CrossRefGoogle Scholar
  126. Regert, M. (2015). Exploitation des produits de la ruche pendant la Préhistoire en Europe et dans le monde méditerranéen. In E. Maire & D. Laffly (Eds.), Abeilles et Paysages. Enjeux apicoles et agricoles (pp. 33–43). Versailles, Editions Quae.Google Scholar
  127. Regert, M., & Mirabaud, S. (2014). Substances naturelles exploitées sur les sites de Chalain et Clairvaux : nature et fonction des matériaux organiques amorphes. In R. M. Arbogast & A. Greffier-Richard (Eds.), Entre archéologie et écologie, une Préhistoire de tous les milieux. Mélanges à Pierre Pétrequin (pp. 79–91). Besançon: Presses Universitaires de Franche-Comté.Google Scholar
  128. Regert, M., Dudd, S. N., Pétrequin, P., & Evershed, R. P. (1999). Fonction des céramiques et alimentation au Néolithique final sur les sites de Chalain: de nouvelles voies d’étude fondées sur l’analyse chimique des résidus organiques conservés dans les poteries. Revue d’archéométrie: 91–99.CrossRefGoogle Scholar
  129. Regert, M., Colinart, S., Degrand, L., & Decavallas, O. (2001a). Chemical alteration and use of beeswax through time: Accelerated ageing tests and analysis of archaeological samples from various environmental contexts. Archaeometry, 43, 549–569.CrossRefGoogle Scholar
  130. Regert, M., Dudd, S. N., Pétrequin, P., & Evershed, R. P. (2001b). Investigations of both extractable and insoluble polymeric components: Organic residues in Neolithic ceramic vessels from Chalain (Jura, France). In A. Millard (Ed.), Archaeological sciences ‘97: Proceedings of the conference held at the University of Durham, 2nd–4th Setptember 1997 (pp. 78–90). Oxford: Archaeopress.Google Scholar
  131. Regert, M., Vacher, S., Moulherat, C., & Decavallas, O. (2003). Adhesive production and pottery function during the Iron Age at the site of Grand Aunay (Sarthe, France). Archaeometry, 45, 101–120.CrossRefGoogle Scholar
  132. Regert, M., Mirabaud, S., Pétrequin, P., Pétrequin, A.-M., & Rolando, C. (2008). Mise en place de nouvelles stratégies analytiques pour la sauvegarde des informations chimiques conservées dans des céramiques archéologiques. Technè: 24–35.Google Scholar
  133. Reid, A., & Young, R. (2000). Pottery abrasion and the preparation of African grains. Antiquity, 74, 101–111.CrossRefGoogle Scholar
  134. Rice, P. M. (1987). Pottery analysis. A sourcebook. Chicago/London: The University Chicago Press.Google Scholar
  135. Roffet-Salque, M., Regert, M., Evershed, R. P., Outram, A. K., Cramp, L. J. E., Decavallas, O., Dunne, J., Gerbault, P., Mileto, S., & Mirabaud, S. (2015). Widespread exploitation of the honeybee by early Neolithic farmers. Nature, 527, 226–230.CrossRefGoogle Scholar
  136. Roux, V., & Courty, M.-A. (2005). Identifying social entities at a macro-regional level: Chalcolithic ceramics of south Levant as a case study. In A. Livingstone Smith, D. Bosquet, & R. Martineau (Eds.), Pottery manufacturing processes: Reconstruction and interpretation (pp. 201–214). BAR International Series 1349. Oxford: Archaeopress.Google Scholar
  137. Roux, V., & Courty, M.-A. (2007). Analyse techno-pétrographique céramique et interprétation fonctionnelle des sites: un exemple d’application dans le Levant Sud Chalcolithique. In A. Bain, J. Chabot, & M. Mousette (Ed.), Recherches en archéométrie: la mesure du passé, BAR Int. Ser. (pp. 153–167.) Oxford: Archeopress.Google Scholar
  138. Roux, V., Courty, M.-A., Dollfus, G., & Lovell, J. (2011). A techno-petrographic approach for defining cultural phases and communities: explaining the variability of Abu Hamid (Jordan Valley) early 5th millenium cal. BC ceramic assemblage. In Y. Rowan & J. Lovell (Eds.), Culture, chronology and the chalcolithic: Theory and transition (pp. 113–132). CBRL levant supplementary monograph series. Oxford: Oxbow Books.Google Scholar
  139. Roux, V., Bril, B., Cauliez, J., Goujon, A.-L., Lara, C., de Saulieu, G., & Zangato, E. (2017). Persisting technological boundaries: Social interactions, cognitive correlations and polarization. Journal of Anthropological Archaeology, 48, 320–335.CrossRefGoogle Scholar
  140. Sackett, J. R. (1977). The meaning of style in archaeology: A general model. American Antiquity, 42, 369–380.CrossRefGoogle Scholar
  141. Salque, M., Bogucki, P. I., Pyzel, J., Sobkowiak-Tabaka, I., Grygiel, R., Szmyt, M., & Evershed, R. P. (2013). Earliest evidence for cheese making in the sixth millennium BC in northern Europe. Nature, 493, 522–525.CrossRefGoogle Scholar
  142. Santacreu, D. A., Trias, M. C., & Rosselló, J. G. (2017). Formal analysis and typological classification in the study of ancient pottery. In A. M. W. Hunt (Ed.), The Oxford handbook of archaeological ceramic analysis (pp. 181–205). Oxford: Oxford University Press.Google Scholar
  143. Saragusti, I., Karasik, A., Sharon, I., & Smilansky, U. (2005). Quantitative analysis of shape attributes based on contours and section profiles in artifact analysis. Journal of Archaeological Science, 32, 841–853.CrossRefGoogle Scholar
  144. Saul, H., Madella, M., Fischer, A., Glykou, A., Hartz, S., & Craig, O. E. (2013). Phytoliths in pottery reveal the use of spice in European prehistoric cuisine. PLoS One, 8, e70583.CrossRefGoogle Scholar
  145. Shepard, A. O. (1965). Ceramics for the archaeologist. Washington, DC: Carnegie Institution of Washington.Google Scholar
  146. Skibo, J. M. (1992). Pottery-function: A use-alteration perspective. New York: Plenum.CrossRefGoogle Scholar
  147. Smith, N. G., Karasik, A., Narayanan, T., Olson, E. S., Smilansky, U., & Levy, T. E. (2014). The pottery informatics query database: A new method for mathematic and quantitative analyses of large regional ceramic datasets. Journal of Archaeological Method and Theory, 21, 212–250.CrossRefGoogle Scholar
  148. Solazzo, C., Fitzhugh, W. W., Rolando, C., & Tokarski, C. (2008). Identification of protein remains in archaeological potsherds by proteomics. Analytical Chemistry, 80, 4590–4597.CrossRefGoogle Scholar
  149. Stark, M. T. (Ed.). (1998). The Archaeology of social boundaries (Smithsonian series in archaeological inquiry). Washington, WA/London: Smithsonian Institution Press.Google Scholar
  150. Stark, M. T., Bowser, B. J., & Horne, L. (Eds.). (2008). Cultural transmission and material culture. Breaking down boundaries. Tucson: The University Arizona Press.Google Scholar
  151. Sterner, J. (1989). Who is signalling whom? Ceramic style, ethnicity and taphonomy among the Sirak Bulahay. Antiquity, 63, 451–459.CrossRefGoogle Scholar
  152. Styring, A. K., Manning, H., Fraser, R. A., Wallace, M., Jones, G., Charles, M., Heaton, T. H. E., Bogaard, A., & Evershed, R. P. (2013). The effect of charring and burial on the biochemical composition of cereal grains: Investigating the integrity of archaeological plant material. Journal of Archaeological Science, 40, 4767–4779.CrossRefGoogle Scholar
  153. van Berg, P.-L. (1988). Le poinçon, le peigne et filecode. Essai sur la structure du décor céramique dans le Rubané récent du nord-ouest. Liège, Belgique: Université de Liège. PhD.Google Scholar
  154. van Berg, P.-L. (1994). Grammaire des styles céramiques du Rubané d’Alsace: wettolsheim-Ricoh I. Zimmersheim: Association pour la promotion de la recherche archéologique en Alsace.Google Scholar
  155. Vieugué, J. (2010). Du vase aux tessons: formes et fonctions de la céramique du Néolithique ancien de l’habitat de Kovačevo (6200–5500 av. J.-C., Bulgarie). Paris: Paris I.Google Scholar
  156. Vieugué, J., Mirabaud, S., & Regert, M. (2008). Contribution méthodologique à l’analyse fonctionnelle des céramiques d’un habitat néolithique: l’exemple de Kovacevo (6 200-5 500 av. J.-C., Bulgarie). ArchéoSciences, 32, 99–113.CrossRefGoogle Scholar
  157. Whallon, R. (1972). A new approach to pottery typology. American Antiquity, 37, 13–33.CrossRefGoogle Scholar
  158. Whallon, R., & Brown, J. A. (Eds.). (1982). Essays on archaeological typology. Evanston: Center for American Archeology Press.Google Scholar
  159. Whittaker, J. C., Caulkins, D., & Kamp, K. A. (1998). Evaluating consistency in typology and classification. Journal of Archaeological Method and Theory, 5, 129–164.CrossRefGoogle Scholar
  160. Wobst, M. (1977). Stylistic behaviour and information exchange. In C. E. Cleland (Ed.), For the director: Research essays in honor of J. B. Griffin (pp. 317–342). Ann Arbor : Museum of Anthropology, University of MichiganMichigan.Google Scholar
  161. Wu, H.-C. (2012). Peuplement et dynamique culturelle à l’âge du Fer Ancien et Récent dans le Nord-Est et le Nord de Taïwan : approche technologique des assemblages céramiques du site de Chiwulan (Ilan, Nord-Est de Taïwan, 650–1850 EC). Nanterre: Université de Paris Nanterre. PhD.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Valentine Roux
    • 1
  1. 1.Préhistoire & Technologie, UMR 7055French National Centre for Scientific ResearchNanterreFrance

Personalised recommendations