Advertisement

Description of the Chaînes Opératoires

  • Valentine Roux
Chapter

Abstract

Identification of the different pottery chaînes opératoires cannot be identified without prior knowledge of the techniques, namely, the main forces at work in the deformation of clay materials. In this aim, this chapter proposes to describe and classify ceramic techniques according to the physical principles governing the properties of clay materials and finished products. The properties of clay materials are analyzed in view of the qualities of the paste sought after by the potter, i.e., durable containers with good resistance to physical shocks. These analytical methods are innovative, given that physicochemical criteria are generally used to address mostly the question of provenances. Manufacturing techniques are also ordered using original classification directly inspired by the researches and terminology forged by lithic analysts. This terminology has largely proven its worth for the analysis of archaeological material in terms of the forces applied, successive sequences, tools, and gestures. From this viewpoint, this classification does not result in a simple catalogue of techniques but organizes them according to the forces involved. The understanding of these forces is essential for analyzing how pastes are deformed during the course of recipient manufacturing and how the diagnostic traits of the techniques are formed.

Keywords

Chaînes opératoires Clay properties Manufacturing techniques Manufacturing methods Mechanical forces Classification of techniques 

References

  1. Amiran, R., & Shenhav, D. (1984). Experiments with an ancient potter’s wheel. In P. M. Rice (Ed.), Pots and potters. Current approaches in ceramic archaeology (pp. 107–112). Los Angeles: Institute of Archaeology, University of California.Google Scholar
  2. Arnal, G.-B. (1989). Céramique et céramologie du néolithique de la France méditerranéenne. (Mémoire du Centre de recherche archéologique du Haut-Languedoc 5). Lodève: Centre de recherche archéologique du Haut-Languedoc.Google Scholar
  3. Arnold, D. E. (1985). Ceramic theory and cultural process. Cambridge: Cambridge University Press.Google Scholar
  4. Arnold, D. E. (2005). Linking society with the compositional analyses of pottery: A model from comparative ethnography. In A. Livingstone Smith, D. Bosquet, & R. Martineau (Eds.), Pottery manufacturing processes: Reconstitution and interpretation (pp. 15–22). BAR International Series 1349. Oxford: Archaeopress.Google Scholar
  5. Arnold, D., & Bourriau, J. (1993). An introduction to ancient Egyptian pottery (Sonderschrift Deutschen Archäologischen Institutes. Abteilung Kairo 17). Mainz am Rhein: P. von Zabern.Google Scholar
  6. Arnold, P. J., III. (1991). Domestic ceramic production and spatial organization: A Mexican case study in ethnoarchaeology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  7. Baldock, J. A., & Skjemstad, J. O. (2000). Role of the soil matrix and minerals in protecting natural organic materials against biological attack. Organic Geochemistry, 31, 697–710.CrossRefGoogle Scholar
  8. Balfet, H. (1984). Methods of formation and the shape of pottery. In S. E. Van der Leeuw & A. C. Pritchard (Eds.), The many dimensions of pottery. Ceramics in archaeology and anthropology (pp. 171–201). Amsterdam: Universiteit van Amsterdam.Google Scholar
  9. Balfet, H., Fauvet-Berthelot, M.-F., & Monzon, S. (1983). Pour la normalisation de la description des poteries. Paris: Editions du CNRS.Google Scholar
  10. Bergaya, F., Theng, B. K. G., & Lagaly, G. (Eds.). (2006). Handbook of clay science (1st ed.). Oxford: Elsevier Science.Google Scholar
  11. Bernstein, N. A. (1967). The coordination and regulation of movements. London: Pergamon.Google Scholar
  12. Blanco-Canqui, H., & Lal, R. (2004). Mechanisms of carbon sequestration in soil aggregates. Critical Reviews in Plant Sciences, 23, 481–504.CrossRefGoogle Scholar
  13. Blondel, N. (2001). Céramique: vocabulaire technique. Paris: Monum Editions du Patrimoine.Google Scholar
  14. Bouquillon, A., Caubet, A., Kaczmarczyk, A., & Matoïan, V. (2007). Faïences et matières vitreuses de l’Orient ancien: étude physico-chimique et catalogue des oeuvres du département des antiquités orientales. Paris – Gand: Musée du Louvre éditions – Snoeck.Google Scholar
  15. Bouvet, P. (2012). Interactions culturelles entre l’Asie du Sud-Est et l’Inde aux 4ème-2ème siècle avt J.-C.: étude technologique des céramiques de Khao Sam Kaeo (Thaïlande péninsulaire, province de Chumphon). Nanterre: Université de Paris Nanterre. PhD.Google Scholar
  16. Brongniart, A. (1977). Traité des arts céramiques ou des poteries considérées dans leur histoire,leur pratique et leur théorie (Fac similé de l’édition de 1877) (Vol. 2). Paris: Dessain et Tolra.Google Scholar
  17. Brown, G., & Brindley, G. W. I. (1980). Crystal structures of clay minerals and their X-ray identification (pp. 361–410). London: Mineralogical Society.Google Scholar
  18. Cauliez, J. (2011). 2900–1900 av. n.-è. Une méthodologie et un référentiel pour un millénaire de produits céramiques dans le Sud-Est de la France (Préhistoires méditerranéennes Supplément). Aix-en-Provence: APPAM.Google Scholar
  19. Chenu, C., & Stotzky, G. (2001). Interactions between microorganisms and soil particles: An overview. In P. M. Huang, J. M. Bollag, & N. Senesi (Eds.), Interactions between soil particles and microorganisms: Impact on the terrestrial ecosystem (pp. 3–40). New York: Wiley.Google Scholar
  20. Chenu, C., Le Bissonnais, Y., & Arrouays, D. (2000). Organic matter influence on clay wettability and soil aggregate stability. Soil Science Society of America Journal, 64, 1479–1486.CrossRefGoogle Scholar
  21. Colbeck, J. (1981). La Poterie: Technique du Tournage. Paris: Dessain et Tolra.Google Scholar
  22. Coutet, C. (2009). Archéologie du littoral de Guyane Française. Une approche ethnoarchéologique des techniques céramiques amérindiennes. Paris: Université de Paris I, Panthéon-Sorbonne. PhD.Google Scholar
  23. D’Anna, A., Desbat, A., Garcia, D., Schmitt, A., & Verhaeghe, F. (2011). La céramique. La poterie, du Néolithique aux Temps modernes (Nouvelle édition revue et augmentée. Archéologiques). Paris: Éd. Errance.Google Scholar
  24. Doherty, S. K. (2015). The origins and use of the potter’s wheel in ancient Egypt (Egyptology 7). Oxford: Archaeopress.Google Scholar
  25. Dupont-Delaleuf, A. (2011). Styles techniques des céramiques de la protohistoire en Asie Centrale: méthodologie et études de cas. Nanterre: Université de Paris Nanterre. PhD.Google Scholar
  26. Echallier, J.-C. (1984). Eléments de technologie céramique et d’analyse des terres cuites archéologiques (Documents d’archéologie méridionale. Numéro spécial, série méthodes et techniques 3). Lambesc: Association pour la Diffusion de l’Archéologie Méridionale.Google Scholar
  27. Fedoroff, N., & Courty, M.-A. (2005). Les Paléosols et sols archéologiques: mémoire des climats et des hommes (Paleosols and archaeological soils: Memory of climate and mandkind). In M.-C. Girard, C. Walter, J. C. Remy, J. Berthelin, & J. L. Morel (Eds.), Sols et environnement (pp. 151–186). Paris: Dunod.Google Scholar
  28. Fedoroff, N., Courty, M.-A., & Guo, Z. (2010). Palaeosoils and relict soils. In G. Stoops, V. Marcellino, & F. Meers (Eds.), Interpretation of micromorphological features of soils and regoliths (pp. 623–662). Amsterdam, The Netherlands: Elsevier.CrossRefGoogle Scholar
  29. Foster, G. M. (1959). The Coyotepec molde and some associated problems of the potter’s wheel. Southwestern Journal of Anthropology, 15, 53–63.CrossRefGoogle Scholar
  30. Frimigacci, D. (1981). La poterie imprimée au battoir en Nouvelle-Calédonie. Journal de la Société des Océanistes, 37, 111–118.CrossRefGoogle Scholar
  31. Fugmann, E. (1958). Hama : fouilles et recherches, 1931–1938. L’architecture des périodes pré-hellénistiques. Copenhague: Nationalmuseet.Google Scholar
  32. Gallay, A. (2012). Potières du Sahel : A la découverte des traditions céramiques de la boucle du Niger. Gollion, Suisse: Infolio.Google Scholar
  33. Gallin, A. (2011). Les styles céramiques de Kobadi : analyse comparative et implications chronoculturelles au Néolithique récent du Sahel Malien (Reports in African archaeology 1). Frankfurt am Main: Africa Magna Verlag.Google Scholar
  34. Gallin, A. (2013). CerAfIm. http://lampea.cnrs.fr/cerafim/ (accessed 14/12/2018).Google Scholar
  35. Gandon, E., Casanova, R., Sainton, P., Coyle, T., Roux, V., Bril, B., & Bootsma, R. J. (2011). A proxy of potters’ throwing skill: Ceramic vessels considered in terms of mechanical stress. Journal of Archaeological Science, 38, 1080–1089.CrossRefGoogle Scholar
  36. Gauss, W., Klebinder-Gauss, G., & von Rüden, C. (Eds.). (2016). The transmission of technical knowledge in the production of ancient Mediterranean pottery (Vol. Sonderschriften band 54). Wien: Österreichisches Archäologisches Institut.Google Scholar
  37. Gelbert, A. (1994). Tour et tournette en Espagne : recherche de macrotraces significatives des différentes techniques et méthodes de façonnage. In J. Courtin & D. Binder (Eds.), Terre cuite et Société. La céramique, document technique, économique, culturel (XIVe Rencontres Internationales d’Archéologie et d’Histoire d’Antibes) (pp. 59–74). Juan-les-Pins: Editions APDCA.Google Scholar
  38. Gelbert, A. (2003). Traditions céramiques et emprunts techniques dans la vallée du fleuve Sénégal. Ceramic traditions and technical borrowings in the Senegal River Valley. Paris: Editions de la Maison des sciences de l’homme and Editions Epistèmes, English/French extracts at http://www.thearkeotekjournal.org/tdm/Arkeotek/en/articles_reedites/Traditions.xml.
  39. Giorgetti, G., Gliozzo, E., & Memmi, I. (2004). Tuscan black glosses a mineralogical characterization by high resolution techniques. European Journal of Mineralogy, 16, 493–503.CrossRefGoogle Scholar
  40. Gliozzo, E., Kirkman, I. W., Pantos, E., & Turbanti, I. M. (2004). Black gloss pottery: Production sites and technology in northern Etruria, part II: Gloss technology. Archaeometry, 46, 227–246.CrossRefGoogle Scholar
  41. Goldfield, E. C., Kay, B. A., & Warren, W. H., Jr. (1993). Infant bouncing: The assembly and tuning of action systems. Child Development, 64, 1128–1142.CrossRefGoogle Scholar
  42. Gomart, L., Weiner, A., Gabriele, M., Durrenmath, G., Sorin, S., Angeli, L., Colombo, M., et al. (2017). Spiralled patchwork in pottery manufacture and the introduction of farming to southern Europe. Antiquity, 91, 1501–1514.CrossRefGoogle Scholar
  43. Gosselain, O. (1992). Bonfire of the enquiries. Pottery firing temperatures in archaeology: What for? Journal of Archaeological Science, 19, 243–259.CrossRefGoogle Scholar
  44. Gosselain, O. (2000). Materializing identities: An African perspective. Journal of Archaeological Method and Theory, 7, 187–217.CrossRefGoogle Scholar
  45. Gosselain, O. (2002). Poteries du Cameroun méridional styles techniques et rapports à l’identité (Monographie du CRA 26). Paris: CNRS Editions.Google Scholar
  46. Gosselain, O. (2010). Ethnographie comparée des trousses à outils de potiers au sud du Niger. Bulletin de la Société préhistorique française, 107, 667–690.CrossRefGoogle Scholar
  47. Gosselain, O., & Livingstone Smith, A. (2005). The source clay selection and processing practices in sub-Saharan Africa. In A. Livingstone Smith, D. Bosquet, & R. Martineau (Eds.), Pottery manufacturing processes: Reconstruction and interpretation (pp. 33–48). BAR International Series 1349. Oxford: Archaeopress.Google Scholar
  48. Guy, P. L. O. (1938). Megiddo tombs. Chicago: Chicago University Press.Google Scholar
  49. Haour, A., Manning, K., Arazi, N., Guèye, S., Keita, D., Livingstone-smith, A., MacDonald, K., Mayor, A., McIntosh, S., & Vernet, R. (Eds.). (2010). African pottery roulettes past and present: Techniques, identification and distribution. Oxford: Oxbow Books.Google Scholar
  50. Heidke, J., & Elson, M. D. (1988). Tucson Basin stucco-coated plain ware: A technological assessment. Kiva, 53, 273–285.CrossRefGoogle Scholar
  51. Hein, A., Müller, N. S., Day, P. M., & Kilikoglou, V. (2008). Thermal conductivity of archaeological ceramics: The effect of inclusions, porosity and firing temperature. Thermochimica Acta, 480, 35–42.CrossRefGoogle Scholar
  52. Holt, K. G., Hamill, J., & Andres, R. O. (1990). The force-driven harmonic oscillator as a model for human locomotion. Human Movement Science, 9, 55–68.CrossRefGoogle Scholar
  53. Hourani, F., & Courty, M.-A. (1997). L’évolution morpho-climatique de 10 500 à 5 500 BP dans la vallée du Jourdain. Paléorient, 23, 95–105.CrossRefGoogle Scholar
  54. Huang, P. M., Li, Y., & Sumner, M. E. (Eds.). (2012). Handbook of soil sciences: Resource management and environmental impacts. Boca Raton: CRC Press, Taylor & Francis Group.Google Scholar
  55. Hunt, A. M. W. (Ed.). (2017). The Oxford handbook of archaeological ceramic analysis. Oxford: Oxford University Press.Google Scholar
  56. Jeffra, C. (2011). The archaeological study of innovation: An experimental approach to the pottery wheel in Bronze Age Crete and Cyprus. Exeter: University of Exeter. PhD.Google Scholar
  57. Kaiser, K., & Guggenberger, G. (2003). Mineral surfaces and soil organic matter. European Journal of Soil Science, 54, 219–236.CrossRefGoogle Scholar
  58. Kilikoglou, V., Vekinis, G., Maniatis, Y., & Day, P. M. (1998). Mechanical performance of quartz-tempered ceramics: Part I, strength and toughness. Archaeometry, 40, 261–279.CrossRefGoogle Scholar
  59. Kramer, C. (1985). Ceramic ethnoarchaeology. Annual Review of Anthropology, 14, 77–102.CrossRefGoogle Scholar
  60. Lepère, C. (2014). Experimental and traceological approach for a technical interpretation of ceramic polished surfaces. Journal of Archaeological Science, 46, 144–155.CrossRefGoogle Scholar
  61. Livingstone Smith, A. (2001a). Chaîne opératoire de la poterie : Références ethnographiques, analyses et reconstitution. Bruxelles: Université Libre de Bruxelles. PhD.Google Scholar
  62. Livingstone Smith, A. (2001b). Bonfire II: The return of pottery firing temperatures. Journal of Archaeological Science, 28, 991–1003.CrossRefGoogle Scholar
  63. Löbert, H. W. (1984). Types of potter’s wheels and the spread of the spindle-wheel in germany. In S. E. van der Leeuw & A. C. Pritchard (Eds.), The many dimensions of pottery. Ceramics in archaeology and anthropology (pp. 203–226). Amsterdam: Universiteit van Amsterdam.Google Scholar
  64. London, G. (1981). Dung-tempered clay. Journal of Field Archaeology, 8, 189–195.Google Scholar
  65. M’Mbogori, F. N. (2015). Population and ceramic traditions: revisiting the Tana Ware of Coastal Kenya (7th–14th century AD). BAR International Series 2717. Cambridge monographs in African archaeology 8. Oxford: Archaeopress.Google Scholar
  66. Magrill, P., & Middleton, A. (1997). A Canaanite potter’s workshop in Palestine. In I. Freestone & D. Gaimster (Eds.), Pottery in the making: World ceramic traditions (pp. 68–73). London: British Museum Press.Google Scholar
  67. Mahias, M.-C. (1993). Pottery techniques in India: Technological variants and social choice. In P. Lemonnier (Ed.), Technological choices: Transformation in material cultures since the Neolithic (pp. 157–180). London and New York: Routledge.Google Scholar
  68. Marchuk, A., & Rengasamy, P. (2011). Clay behaviour in suspension is related to the ionicity of clay–cation bonds. Applied Clay Science, 53, 754–759.CrossRefGoogle Scholar
  69. Margueron, J.-C. (2004). Mari : métropole de l’Euphrate au IIIe et au début du IIe millénaire avant J.-C. Paris: Picard, Editions Recherches Sur les Civilisations.Google Scholar
  70. Mayor, A. (2010). Outils de potières au Mali: chaînes opératoires et traditions techniques. Bulletin de la Société préhistorique française, 107, 643–666.CrossRefGoogle Scholar
  71. Michelaki, K., Braun, G. V., & Hancock, R. G. V. (2015). Local clay sources as histories of human–landscape interactions: A ceramic taskscape perspective. Journal of Archaeological Method and Theory, 22, 783–827.CrossRefGoogle Scholar
  72. Müller, N. S. (2017). Mechanical and thermal properties. In A. Hunt (Ed.), The Oxford handbook of archaeological ceramic analysis (pp. 603-624). Oxford: Oxford University Press.Google Scholar
  73. Müller, N. S., Kilikoglou, V., Day, P. M., & Vekinis, G. (2010). The influence of temper shape on the mechanical properties of archaeological ceramics. Journal of the European Ceramic Society, 30, 2457–2465.CrossRefGoogle Scholar
  74. Murray, H. H. (1999). Applied clay mineralogy today and tomorrow. Clay Minerals, 34, 39–39.CrossRefGoogle Scholar
  75. Nalbantoglu, Z. (2006). Lime stabilization of expansive clay. In A. A. Al-Rawas & M. F. A. Goosen (Eds.), Expansive soils: Recent advances in characterization and treatment (Vol. 1, pp. 341–348). London: Taylor & Francis Group.Google Scholar
  76. Orton, C., Tyers, P., & Vince, A. (1993). Pottery in archaeology. Cambridge: Cambridge University Press.Google Scholar
  77. Pétrequin, P., Martineau, R., Nowicki, P., Gauthier, E., & Schaal, C. (2009). La poterie Hoguette de Choisey (Jura), les Champins. Observations techniques et insertion régionale. Bulletin de la Société préhistorique française, 106, 491–515.CrossRefGoogle Scholar
  78. Picon, M. (1973). Introduction à l’étude technique des céramiques sigillées de Lezoux. Lyon: Centre de recherche sur les techniques gréco-romaines.Google Scholar
  79. Pierret, A. (2001). Analyse technologique des céramiques archéologiques : développements méthodologiques pour l’identification des techniques de façonnage. Un exemple d’application : le matériel du village des Arènes à Levroux (Indre) (Thèse à La Carte). Villeneuve d’Ascq: Presses Universitaires du Septentrion.Google Scholar
  80. Porter, Y., & Castinel, R. (2011). Le prince, l’artiste et l’alchimiste: la céramique dans le monde iranien, Xe au XVIIe siècles. Paris: Hermann.Google Scholar
  81. Porter, A., & McClellan, T. (1998). The third millennium settlement complex at Tell Banat: Results of the 1994 excavations. Damaszener Mitteilungen, 10, 10–63.Google Scholar
  82. Powell, C. (1995). The nature and use of ancient Egyptian potter’s wheel. In Amarna reports VI (pp. 309–335). London: Egypt Exploration Society.Google Scholar
  83. Quinn, P. S. (2013). Ceramic petrography: The interpretation of archaeological pottery & related artefacts in thin section. Oxford: Archaeopress.Google Scholar
  84. Ramón, G. (2011). The swallow potters: seasonal migratory styles in the Andes. In S. Scarcella (Ed.), Archaeological ceramics: A review of current research (pp. 160–175). BAR International Series 2193. Oxford: Archaeopress.Google Scholar
  85. Reedy, C. L. (2008). Thin-section petrography of stone and ceramic cultural materials. London: Archetype.Google Scholar
  86. Reina, R. E., & Hill, R. M. (1978). The traditional pottery of Guatemala. Austin: University of Texas Press.Google Scholar
  87. Rice, P. M. (1987). Pottery analysis. A sourcebook. Chicago and London: The University Chicago Press.Google Scholar
  88. Rice, P. M. (1996). Recent ceramic analysis: I. Function, style and origins. Journal of Archaeological Research, 4, 133–163.CrossRefGoogle Scholar
  89. Roobaert, R., & Trokay, M. (1990). Surface finds. Abr-Nahrain, 2, 121–125.Google Scholar
  90. Rostain, S. (1991). La céramique amérindienne de Guyane française. Schweizerische Amerikanisten Gesellschaft, 55–56, 93–127.Google Scholar
  91. Roux, V. (2009). The potter’s wheel in Midddle Bronze II in the southern Levant: Technological study of the Beth Shean ceramics. The Arkeotek Journal www.thearkeotekjournal.org.
  92. Roux, V. (2011). Habiletés et inventions: Le comportement “intelligent”, un facteur aléatoire dans l’évolution des techniques. In R. Treuil (Ed.), Archéologie cognitive : Techniques, modes de communication, mentalités (pp. 173–188). Paris: Maison des Sciences de l’Homme.Google Scholar
  93. Roux, V. (2017). Smoothing and clay coating: Reference collections for interpreting southern Levant Chalcolithic finishing techniques and surface treatments. The Arkeotek Journal www.thearkeotekjournal.org.
  94. Roux, V., & Corbetta, D. (1989). Wheel-throwing technique and craft specialization. In V. Roux (in coll. with D. Corbetta), The potter’s wheel. Craft specialization and technical competence (pp. 1–91). New Delhi: Oxford and IBH Publishing.Google Scholar
  95. Roux, V., & Courty, M.-A. (1998). Identification of wheel-fashioning methods: Technological analysis of 4th-3rd millennium BC oriental ceramics. Journal of Archaeological Science, 25, 747–763.CrossRefGoogle Scholar
  96. Roux, V., & de Miroschedji, P. (2009). Revisiting the history of the potter’s wheel in the southern Levant. Levant, 41, 155–173.CrossRefGoogle Scholar
  97. Roux, V., Bril, B., & Karasik, A. (2018). Weak ties and expertise: Crossing technological boundaries. Journal of Archaeological Method and Theory, 2, 1–27.Google Scholar
  98. Rye, O. S. (1977). Pottery manufacturing techniques: X-ray studies. Archaeometry, 19, 205–211.CrossRefGoogle Scholar
  99. Rye, O. S. (1981). Pottery technology. Principles and reconstruction (Manuals on Archaeology 4). Washington, DC: Taraxacum Press.Google Scholar
  100. Rye, O. S., & Evans, C. (1976). Traditional pottery techniques of Pakistan: Field and laboratory studies. Washington, DC: Smithsonian Institution Press.Google Scholar
  101. Sall, M. (2005). Cultural contacts and technical heritage in Senegambia. In A. Livingstone Smith, D. Bosquet, & R. Martineau (Eds.), Pottery manufacturing processes: Reconstitution and interpretation (pp. 57–66). BAR International Series 1349. Oxford: British Archaeological Reports Ltd.Google Scholar
  102. Saraswati, B., & Behura, N. K. (1964). Pottery techniques in peasant India. Calcutta: Anthropological Survey of India.Google Scholar
  103. Scheans, D. J. (1977). Filipino market potteries (Vol. 3). Manila: National Museum of the Philippines.Google Scholar
  104. Schiffer, M. B. (1988). The effects of surface treatment on permeability and evaporative cooling effectiveness of pottery. In R. M. Farquhar, R. G. V. Hancock, & L. A. Pavlish (Eds.), Proceedings of the 26th international archaeometry symposium (pp. 23–29). Toronto: University of Toronto, Archaeometry Laboratory.Google Scholar
  105. Schiffer, M. B. (1990). The influence of surface treatment on heating effectiveness of ceramic vessels. Journal of Archaeological Science, 17, 373–381.CrossRefGoogle Scholar
  106. Schiffer, M. B., Skibo, J. M., Boelke, T. C., Neupert, M. A., & Aronson, M. (1994). New perspectives on experimental archaeology: Surface treatments and thermal response of the clay cooking pot. American Antiquity, 59, 197–217.CrossRefGoogle Scholar
  107. Schulten, H.-R., & Leinweber, P. (1999). Thermal stability and composition of mineral-bound organic matter in density fractions of soil. European Journal of Soil Science, 50, 237–248.CrossRefGoogle Scholar
  108. Sedov, S., Solleiro-Rebolledo, E., Fedick, S. L., Gama-Castro, J., Palacios-Mayorga, S., & Vallejo Gómez, E. (2007). Soil genesis in relation to landscape evolution and ancient sustainable land use in the northeastern Yucatan Peninsula, Mexico. Atti della Societa Toscana di Scienze Naturali Residente in Pisa, Memorie Serie A, 112, 115–126.Google Scholar
  109. Sestier, C. (2005). Utilisation du dégraissant végétal en contexte néolithique: hypothèses technologiques et expérimentation. In A. Livingstone Smith, D. Bosquet, & R. Martineau (Eds.), Pottery manufacturing processes: Reconstruction and interpretation (pp. 81–94). BAR International Series 1349. Oxford: Archaeopress.Google Scholar
  110. Sevrez, V., Rao, G., Berton, E., & Bootsma, R. J. (2012). On the organizing role of nonmuscular forces during performance of a giant circle in gymnastics. Journal of Applied Biomechanics, 28, 57–62.CrossRefGoogle Scholar
  111. Shepard, A. O. (1965). Ceramics for the archaeologist. Washington, DC: Carnegie Institution of Washington.Google Scholar
  112. Six, J., Conant, R. T., Paul, E. A., & Paustian, K. (2002). Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant and Soil, 241, 155–176.CrossRefGoogle Scholar
  113. Skibo, J. M., Schiffer, M. B., & Reid, K. C. (1989). Organic-tempered pottery: An experimental study. American Antiquity, 54, 122–146.CrossRefGoogle Scholar
  114. Skibo, J. M., Butts, T. C., & Schiffer, M. B. (1997). Ceramic surface treatment and abrasion resistance: An experimental study. Journal of Archaeological Science, 24, 311–317.CrossRefGoogle Scholar
  115. Steponaitis, V. P. (1984). Technological studies of prehistoric pottery from Alabama: Physical properties and vessel function. In S. E. van der Leeuw & A. Pritchard (Eds.), Many dimensions of pottery: Ceramics in archaeology and anthropology (pp. 79–122). Amsterdam: University of Amsterdam.Google Scholar
  116. Tessier, D. (1990). Behaviour and microstructure of clay minerals. In M. F. De Boodt, M. H. Hayes, & A. Herbillon (Eds.), Soil colloids and their associations in aggregates (pp. 387–415). New York: Springer.CrossRefGoogle Scholar
  117. Thalmann, J.-P. (2006). Tell Arqa, 1. Les niveaux de l’âge du Bronze (Bibliothèque archéologique et historique 177). Beyrouth: Institut français du Proche-Orient.Google Scholar
  118. Theng, B. K. G. (2012). Formation and properties of clay-polymer complexes (Developments in Clay Science 4) (2nd ed.). Amsterdam, The Netherlands: Elsevier.Google Scholar
  119. Thér, R., & Gregor, M. (2011). Experimental reconstruction of the pottery firing process of late Bronze Age pottery from north-eastern Bohemia. In S. Scarcella (Ed.), Archaeological ceramics: A review of current research (pp. 128–142). BAR International Series 2193. Oxford: Archaeopress.Google Scholar
  120. Tite, M. S. (2008). Ceramic production, provenance and use – a review. Archaeometry, 50, 216–231.CrossRefGoogle Scholar
  121. Tite, M. S., Bimson, M., & Freestone, I. C. (1982). An examination of the high gloss surface finishes on Greek Attic and Roman Samian wares. Archaeometry, 24, 117–126.CrossRefGoogle Scholar
  122. Tite, M. S., Kilikoglou, V., & Vekinis, V. (2001). Strength, toughness and thermal shock resistance of ancient ceramics, and their influence on technological choice. Archaeometry, 43, 301–324.CrossRefGoogle Scholar
  123. Tixier, J. (1967). Procédés d’analyse et questions de terminologie dans l’étude des ensembles industriels du Paléolithique récent et de l’épipaléolithique en Afrique du Nord-Ouest. In W.W. Bishop & J.D. Clark (Eds.), Background to evolution in Africa (pp. 771–820). Chicago and London: The University Press of Chicago.Google Scholar
  124. Trokay, M. (1989). Les deux documents complémentaires en basalte du Tell Kannâs: base de tournette ou meule? In M. Lebeau & P. Talon (Eds.), Reflets des deux fleuves. Volume de Mélanges offerts à André Finet (pp. 169–175). Leuven: Publications of the Melbourne University, Expedition to Tell Ahmar.Google Scholar
  125. van der Leeuw, S. E. (1993). Giving the potter a choice: Conceptual aspects of pottery techniques. In P. Lemonnier (Ed.), Technological choices: Transformation in material cultures since the Neolithic (pp. 238–288). London and New York: Routledge.Google Scholar
  126. van der Leeuw, S. (1994). Innovation et tradition chez les potiers mexicains ou comment les gestes techniques traduisent les dynamiques d’une société. In B. Latour & P. Lemonnier (Eds.), De la préhistoire aux missiles balistiques. L’intelligence sociale des techniques (pp. 310–328). Paris: Editions La Découverte.Google Scholar
  127. Vandiver, P., Ellingson, W., Robinson, T., Lobick, J. J., & Séguin, F. H. (1991). New applications of X-radiographic imaging technologies for archaeological ceramics. Archeomaterials, 5, 185–207.Google Scholar
  128. Velde, B., & Druc, I. C. (2012). Archaeological ceramic materials: Origin and utilization. London: Springer Science & Business Media.Google Scholar
  129. Velde, B., & Meunier, A. (2008). The origin of clay minerals in soils and weathered rocks. New York: Springer.CrossRefGoogle Scholar
  130. Virot, C. (2005). La poterie africaine les techniques céramiques en Afrique noire (Granit). Banon: Argile.Google Scholar
  131. Voyatzoglou, M. (1973). The potters of Thrapsano. Ceramic Review (London), 24, 13–16.Google Scholar
  132. Voyatzoglou, M. (1974). The jar makers of Thrapsano in Crete. Expedition, 16, 18–24.Google Scholar
  133. Whitbread, I. K. (2001). Ceramic petrology, clay geochemistry and ceramic production. From technology to the mind of the potter. In D. R. Brothwell & A. M. Pollard (Eds.), Handbook of archaeological sciences (pp. 449–459). London: Wiley.Google Scholar
  134. Whitbread, I. (2017). Fabric description of archaeological ceramics. In A. Hunt (Ed.), The Oxford handbook of archaeological ceramic analysis (pp. 200–224). Oxford: Oxford University Press.Google Scholar
  135. Wu, H.-C. (2012). Peuplement et dynamique culturelle à l’âge du Fer Ancien et Récent dans le Nord-Est et le Nord de Taïwan : approche technologique des assemblages céramiques du site de Chiwulan (Ilan, Nord-Est de Taïwan, 650–1850 EC). Nanterre: Université de Paris Nanterre. PhD.Google Scholar
  136. Yadin, I., Aharoni, Y., & Amiran, R. (1958). Hazor. I. An Account of the first season of excavations, 1955. Jerusalem: Magnes Press, Hebrew University.Google Scholar
  137. Yadin, I., Aharoni, Y., & Amiran, R. (1960). Hazor. II. An Account of the second season of excavations, 1956. Jerusalem: Magnes Press, Hebrew University.Google Scholar
  138. Zhang, B., & Horn, R. (2001). Mechanisms of aggregate stabilization in Ultisols from subtropical China. Geoderma, 99, 123–145.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Valentine Roux
    • 1
  1. 1.Préhistoire & Technologie, UMR 7055French National Centre for Scientific ResearchNanterreFrance

Personalised recommendations