Advertisement

Heat Shock Proteins, Exercise and Inflammation

  • Fabiano T. AmorimEmail author
  • Micah N. Zuhl
Chapter
Part of the Heat Shock Proteins book series (HESP, volume 17)

Abstract

The heat shock response (HSR) plays a regulatory role in controlling inflammatory events within a cell. The activation/induction and interplay of heat shock factor 1 (HSF1) and heat shock proteins (HSP) have inhibitory effect on nuclear factor-kappa B (NFκB) inflammatory pathway, c-Jun N-terminal kinases (JNK) regulation, and preventing free radical damage. Exercise training induces the HSR and has the potential to reduce inflammation. The current chapter examines the regulatory impacts of the HSR on inflammation and the role of the HSR in chronic inflammatory disease states, such as skeletal muscle insulin resistance and ischemia/reperfusion injury of the myocardium. In addition, we discuss the inflammatory role of exercise training in activating the HSR, improving insulin signaling, reducing vasculature inflammation, and promoting cardioprotection against ischemia/reperfusion injury of the myocardium.

Keywords

Cardioprotection Cardiovascular disease Free radical damage Insulin resistance Ischemia/reperfusion Type 2 diabetes mellitus 

Abbreviations

AKT

protein kinase B

AMPK

5′ adenosine monophosphate-activated protein kinase

AP-1

activation protein-1

ERK1/2

extracellular signal-regulated protein kinases 1 and 2

GLUT4

glucose transporter type 4

HIIT

high intensity interval training

HOMA

homeostasis model assessment index

HSF-1

heat shock factor 1

HSP

heat shock proteins

HSP27

heat shock protein 27

HSP60

heat shock protein 60

HSP70 or HSPA

family of heat shock protein 70 kda

Hsp72 or HSPA1A

heat shock protein 72 kda

HSR

heat shock response

IKK

inhibitor of NF-κB kinase

IL-1β

interleukin-1 β

IMTG

intramuscular triglyceride

IR

insulin resistance

IRS-1

insulin receptor substrate 1

JNK

c-jun amino terminal kinase

LPS

lipopolysaccharide

MAPK

mitogen activated protein kinase

NFκB

nuclear factor-kappa B

OGTT

oral glucose tolerance test

PBMC

peripheral blood mononuclear cell

RNS

reactive nitrogen species

ROS

reactive oxygen species

T2DM

type 2 diabetes mellitus

TNF-α

tumor necrosis factor-alpha

UCP-3

uncoupling protein 3

β-HAD

β-hydroxyacyl-CoA-dehydrogenase

Notes

Acknowledgements

The authors acknowledge M.S. Roberto Nava for reviewing the chapter.

References

  1. Abubaker J, Tiss A, Abu-Farha M et al (2013) DNAJB3/HSP-40 cochaperone is downregulated in obese humans and is restored by physical exercise. PLoS One 8:e69217PubMedPubMedCentralCrossRefGoogle Scholar
  2. Adachi H, Kondo T, Ogawa R et al (2010) An acylic polyisoprenoid derivative, geranylgeranylacetone protects against visceral adiposity and insulin resistance in high-fat-fed mice. Am J Physiol Endocrinol Metab 299:E764–E771PubMedCrossRefGoogle Scholar
  3. Atalay M, Oksala NK, Laaksonen DE et al (2004) Exercise training modulates heat shock protein response in diabetic rats. J Appl Physiol (1985) 97:605–611CrossRefGoogle Scholar
  4. Bektas A, Schurman SH, Sen R, Ferrucci L (2018) Aging, inflammation and the environment. Exp Gerontol 105:10–18PubMedCrossRefGoogle Scholar
  5. Borges JP, Lessa MA (2015) Mechanisms involved in exercise-induced cardioprotection: a systematic review. Arq Bras Cardiol 105:71–81PubMedPubMedCentralGoogle Scholar
  6. Bruce CR, Carey AL, Hawley JA, Febbraio MA (2003) Intramuscular heat shock protein 72 and heme oxygenase-1 mRNA are reduced in patients with type 2 diabetes: evidence that insulin resistance is associated with a disturbed antioxidant defense mechanism. Diabetes 52:2338–2345PubMedCrossRefGoogle Scholar
  7. Bruemmer-Smith S, Stuber F, Schroeder S (2001) Protective functions of intracellular heat-shock protein (HSP) 70-expression in patients with severe sepsis. Intensive Care Med 27:1835–1841PubMedCrossRefGoogle Scholar
  8. Brunt VE, Needham KW, Comrada LN, Minson CT (2017) Mild heat pretreatment and serum from sedentary humans subjected to passive heat therapy protect endothelial cells against stress from hypoxia-reoxygenation. FASEB J 31:1086.2–1086.2Google Scholar
  9. Chang L, Karin M (2001) Mammalian MAP kinase signalling cascades. Nature 410:37–40PubMedCrossRefGoogle Scholar
  10. Chen Y-R, Wang X, Templeton D, Davis RJ, Tan T-H (1996) The role of c-Jun N-terminal kinase (JNK) in apoptosis induced by ultraviolet C and γ radiation duration of JNK activation may determine cell death and proliferation. J Biol Chem 271:31929–31936PubMedCrossRefGoogle Scholar
  11. Choi YJ, Kim NH, Lim MS, Lee HJ, Kim SS, Chun W (2014) Geldanamycin attenuates 3-nitropropionic acid-induced apoptosis and JNK activation through the expression of HSP 70 in striatal cells. Int J Mol Med 34:24–34PubMedPubMedCentralCrossRefGoogle Scholar
  12. Chung J, Nguyen AK, Henstridge DC et al (2008) HSP72 protects against obesity-induced insulin resistance. Proc Natl Acad Sci U S A 105:1739–1744PubMedPubMedCentralCrossRefGoogle Scholar
  13. Cuevas MJ, Almar M, Garcia-Glez JC et al (2005) Changes in oxidative stress markers and NF-kappaB activation induced by sprint exercise. Free Radic Res 39:431–439PubMedCrossRefGoogle Scholar
  14. de Matos MA, Ottone Vde O, Duarte TC et al (2014) Exercise reduces cellular stress related to skeletal muscle insulin resistance. Cell Stress Chaperones 19:263–270PubMedCrossRefGoogle Scholar
  15. de Matos MA, Vieira DV, Pinhal KC, Lopes JF, Dias-Peixoto MF, Pauli JR, de Castro Magalhães F, Little JP, Rocha-Vieira E, Amorim FT (2018) High-intensity interval training improves markers of oxidative metabolism in skeletal muscle of individuals with obesity and insulin resistance. Front Physiol 9Google Scholar
  16. Decoursey T, Ligeti E (2005) Regulation and termination of NADPH oxidase activity. Cell Mol Life Sci 62:2173–2193PubMedCrossRefGoogle Scholar
  17. DeFronzo RA, Jacot E, Jequier E, Maeder E, Wahren J, Felber JP (1981) The effect of insulin on the disposal of intravenous glucose. Results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes 30:1000–1007PubMedCrossRefGoogle Scholar
  18. Dhanasekaran D, Johnson G (2007) MAPKs: function, regulation, role in cancer and therapeutic targeting. Oncogene 26:3097–3097PubMedCrossRefGoogle Scholar
  19. Dhanasekaran DN, Reddy EP (2008) JNK signaling in apoptosis. Oncogene 27:6245–6251PubMedPubMedCentralCrossRefGoogle Scholar
  20. Di Meo S, Iossa S, Venditti P (2017) Improvement of obesity-linked skeletal muscle insulin resistance by strength and endurance training. J Endocrinol 234:R159–Rr81PubMedCrossRefGoogle Scholar
  21. Ding XZ, Tsokos GC, Kiang JG (1998) Overexpression of HSP-70 inhibits the phosphorylation of HSF1 by activating protein phosphatase and inhibiting protein kinase C activity. FASEB J 12:451–459PubMedCrossRefGoogle Scholar
  22. Ding XZ, Fernandez-Prada CM, Bhattacharjee AK, Hoover DL (2001) Over-expression of hsp-70 inhibits bacterial lipopolysaccharide-induced production of cytokines in human monocyte-derived macrophages. Cytokine 16:210–219PubMedCrossRefGoogle Scholar
  23. Ding YH, Ding Y, Li J, Bessert DA, Rafols JA (2006) Exercise pre-conditioning strengthens brain microvascular integrity in a rat stroke model. Neurol Res 28:184–189PubMedCrossRefGoogle Scholar
  24. Dokladny K, Lobb R, Wharton W, Ma TY, Moseley PL (2010) LPS-induced cytokine levels are repressed by elevated expression of HSP70 in rats: possible role of NF-kappaB. Cell Stress Chaperones 15:153–163PubMedCrossRefGoogle Scholar
  25. Dokladny K, Zuhl MN, Mandell M et al (2013) Regulatory coordination between two major intracellular homeostatic systems: heat shock response and autophagy. J Biol Chem 288:14959–14972PubMedPubMedCentralCrossRefGoogle Scholar
  26. Feder ME, Hofmann GE (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61:243–282PubMedCrossRefGoogle Scholar
  27. Gabai VL, Meriin AB, Mosser DD et al (1997) Hsp70 prevents activation of stress Kinases a novel pathway of cellular thermotolerance. J Biol Chem 272:18033–18037PubMedCrossRefPubMedCentralGoogle Scholar
  28. Gabai VL, Meriin AB, Yaglom JA, Volloch VZ, Sherman MY (1998) Role of Hsp70 in regulation of stress-kinase JNK: implications in apoptosis and aging. FEBS Lett 438:1–4PubMedCrossRefGoogle Scholar
  29. Gloire G, Dejardin E, Piette J (2006) Extending the nuclear roles of IkappaB kinase subunits. Biochem Pharmacol 72:1081–1089PubMedCrossRefGoogle Scholar
  30. Gupte AA, Bomhoff GL, Swerdlow RH, Geiger PC (2009) Heat treatment improves glucose tolerance and prevents skeletal muscle insulin resistance in rats fed a high-fat diet. Diabetes 58:567–578PubMedPubMedCentralCrossRefGoogle Scholar
  31. Guzhova IV, Darieva ZA, Melo AR, Margulis BA (1997) Major stress protein Hsp70 interacts with NF-kB regulatory complex in human T-lymphoma cells. Cell Stress Chaperones 2:132–139PubMedPubMedCentralCrossRefGoogle Scholar
  32. Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature 381:571–579PubMedCrossRefGoogle Scholar
  33. Heneka MT, Gavrilyuk V, Landreth GE, O’Banion MK, Weinberg G, Feinstein DL (2003) Noradrenergic depletion increases inflammatory responses in brain: effects on IkappaB and HSP70 expression. J Neurochem 85:387–398PubMedCrossRefGoogle Scholar
  34. Henstridge DC, Forbes JM, Penfold SA et al (2010) The relationship between heat shock protein 72 expression in skeletal muscle and insulin sensitivity is dependent on adiposity. Metabolism 59:1556–1561PubMedCrossRefGoogle Scholar
  35. Henstridge DC, Bruce CR, Drew BG et al (2014) Activating HSP72 in rodent skeletal muscle increases mitochondrial number and oxidative capacity and decreases insulin resistance. Diabetes 63:1881–1894PubMedPubMedCentralCrossRefGoogle Scholar
  36. Hirosumi J, Tuncman G, Chang L et al (2002) A central role for JNK in obesity and insulin resistance. Nature 420:333–336PubMedCrossRefGoogle Scholar
  37. Holgate ST (2004) Cytokine and anti-cytokine therapy for the treatment of asthma and allergic disease. Cytokine 28:152–157PubMedCrossRefGoogle Scholar
  38. Hooper PL, Hooper PL (2009) Inflammation, heat shock proteins, and type 2 diabetes. Cell Stress Chaperones 14:113–115PubMedCrossRefGoogle Scholar
  39. Horowitz M, Eli-Berchoer L, Wapinski I, Friedman N, Kodesh E (2004) Stress-related genomic responses during the course of heat acclimation and its association with ischemic-reperfusion cross-tolerance. J Appl Physiol 97:1496–1507PubMedCrossRefGoogle Scholar
  40. Hotchkiss R, Nunnally I, Lindquist S, Taulien J, Perdrizet G, Karl I (1993) Hyperthermia protects mice against the lethal effects of endotoxin. Am J Phys 265:R1447–R1457Google Scholar
  41. Kalmar B, Greensmith L (2009) Induction of heat shock proteins for protection against oxidative stress. Adv Drug Deliv Rev 61:310–318PubMedCrossRefGoogle Scholar
  42. Kaneto H, Nakatani Y, Miyatsuka T et al (2004) Possible novel therapy for diabetes with cell-permeable JNK-inhibitory peptide. Nat Med 10:1128–1132PubMedCrossRefGoogle Scholar
  43. Karin M, Gallagher E (2005) From JNK to pay dirt: Jun kinases, their biochemistry, physiology and clinical importance. IUBMB Life 57:283–295PubMedCrossRefGoogle Scholar
  44. Kasuga M (2006) Insulin resistance and pancreatic beta cell failure. J Clin Invest 116:1756–1760PubMedPubMedCentralCrossRefGoogle Scholar
  45. Kizelsztein P, Komarnytsky S, Raskin I (2009) Oral administration of triptolide ameliorates the clinical signs of experimental autoimmune encephalomyelitis (EAE) by induction of HSP70 and stabilization of NF-κB/IκBα transcriptional complex. J Neuroimmunol 217:28–37PubMedCrossRefGoogle Scholar
  46. Knight RJ, Buxton DB (1996) Stimulation of c-Jun kinase and mitogen-activated protein kinase by ischemia and reperfusion in the perfused rat heart. Biochem Biophys Res Commun 218:83–88PubMedCrossRefGoogle Scholar
  47. Kohn G, Wong HR, Bshesh K et al (2002) Heat shock inhibits tnf-induced ICAM-1 expression in human endothelial cells via I kappa kinase inhibition. Shock 17:91–97PubMedCrossRefGoogle Scholar
  48. Kregel KC (2002) Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J Appl Physiol (1985) 92:2177–2186CrossRefGoogle Scholar
  49. Kuennen M, Gillum T, Dokladny K, Bedrick E, Schneider S, Moseley P (2011) Thermotolerance and heat acclimation may share a common mechanism in humans. Am J Physiol Regul Integr Comp Physiol 301:R524–R533PubMedPubMedCentralCrossRefGoogle Scholar
  50. Kurucz I, Morva A, Vaag A et al (2002) Decreased expression of heat shock protein 72 in skeletal muscle of patients with type 2 diabetes correlates with insulin resistance. Diabetes 51:1102–1109PubMedCrossRefGoogle Scholar
  51. Lee YH, Giraud J, Davis RJ, White MF (2003) c-Jun N-terminal kinase (JNK) mediates feedback inhibition of the insulin signaling cascade. J Biol Chem 278:2896–2902PubMedCrossRefGoogle Scholar
  52. Li S, Piotrowicz RS, Levin EG, Shyy YJ, Chien S (1996) Fluid shear stress induces the phosphorylation of small heat shock proteins in vascular endothelial cells. Am J Phys 271:C994–C1000CrossRefGoogle Scholar
  53. Li X, Su J, Cui X, Li Y, Barochia A, Eichacker PQ (2009) Can we predict the effects of NF-kappaB inhibition in sepsis? Studies with parthenolide and ethyl pyruvate. Expert Opin Investig Drugs 18:1047–1060PubMedPubMedCentralCrossRefGoogle Scholar
  54. Liang M, Wang X, Yuan Y, Zhou Q, Tong C, Jiang W (2009) Different effect of glutamine on macrophage tumor necrosis factor-alpha release and heat shock protein 72 expression in vitro and in vivo. Acta Biochim Biophys Sin 41:171–177PubMedCrossRefGoogle Scholar
  55. Liu SF, Malik AB (2006) NF-kappa B activation as a pathological mechanism of septic shock and inflammation. Am J Physiol Lung Cell Mol Physiol 290:L622–Ll45PubMedCrossRefGoogle Scholar
  56. Locke M, Tanguay RM, Klabunde RE, Ianuzzo CD (1995) Enhanced postischemic myocardial recovery following exercise induction of HSP 72. Am J Phys 269:H320–H325Google Scholar
  57. Ma S, Rao L, Freedberg IM, Blumenberg M (1997) Transcriptional control of K5, K6, K14, and K17 keratin genes by AP-1 and NF-κB family members. Gene Expr 6:361–370PubMedGoogle Scholar
  58. Madamanchi NR, Li S, Patterson C, Runge MS (2001) Reactive oxygen species regulate heat-shock protein 70 via the JAK/STAT pathway. Arterioscler Thromb Vasc Biol 21:321–326CrossRefGoogle Scholar
  59. McCormick PH, Chen G, Tierney S, Kelly CJ, Bouchier-Hayes DJ (2003) Clinically applicable thermal preconditioning attenuates leukocyte-endothelial interactions. J Am Coll Surg 197:71–78PubMedCrossRefGoogle Scholar
  60. Miller SC, Huang R, Sakamuru S et al (2010) Identification of known drugs that act as inhibitors of NF-kappaB signaling and their mechanism of action. Biochem Pharmacol 79:1272–1280PubMedPubMedCentralCrossRefGoogle Scholar
  61. Milne KJ, Wolff S, Noble EG (2012) Myocardial accumulation and localization of the inducible 70-kDa heat shock protein, Hsp70, following exercise. J Appl Physiol (1985) 113:853–860CrossRefGoogle Scholar
  62. Mizushima T (2010) HSP-dependent protection against gastrointestinal diseases. Curr Pharm Des 16:1190–1196PubMedCrossRefGoogle Scholar
  63. Morimoto RI, Santoro MG (1998) Stress-inducible responses and heat shock proteins: new pharmacologic targets for cytoprotection. Nat Biotechnol 16:833–838PubMedCrossRefGoogle Scholar
  64. Morimoto RI, Kline MP, Bimston DN, Cotto JJ (1997) The heat-shock response: regulation and function of heat-shock proteins and molecular chaperones. Essays Biochem 32:17–29PubMedGoogle Scholar
  65. Moris D, Spartalis M, Tzatzaki E et al (2017) The role of reactive oxygen species in myocardial redox signaling and regulation. Ann Transl Med 5:324PubMedPubMedCentralCrossRefGoogle Scholar
  66. Mosser DD, Caron AW, Bourget L et al (2000) The chaperone function of hsp70 is required for protection against stress-induced apoptosis. Mol Cell Biol 20:7146–7159PubMedPubMedCentralCrossRefGoogle Scholar
  67. Muller FL, Liu Y, Van Remmen H (2004) Complex III releases superoxide to both sides of the inner mitochondrial membrane. J Biol Chem 279:49064–49073PubMedCrossRefGoogle Scholar
  68. Nishizawa J, Nakai A, Matsuda K, Komeda M, Ban T, Nagata K (1999) Reactive oxygen species play an important role in the activation of heat shock factor 1 in ischemic-reperfused heart. Circulation 99:934–941PubMedCrossRefGoogle Scholar
  69. Pande V, Ramos M (2005) NF-κB in human disease: current inhibitors and prospects for de novo structure based design of inhibitors. Curr Med Chem 12:357–374PubMedCrossRefGoogle Scholar
  70. Park HS, Lee JS, Huh SH, Seo JS, Choi EJ (2001) Hsp72 functions as a natural inhibitory protein of c-Jun N-terminal kinase. EMBO J 20:446–456PubMedPubMedCentralCrossRefGoogle Scholar
  71. Paroo Z, Haist JV, Karmazyn M, Noble EG (2002) Exercise improves postischemic cardiac function in males but not females: consequences of a novel sex-specific heat shock protein 70 response. Circ Res 90:911–917PubMedCrossRefGoogle Scholar
  72. Pattison JS, Sanbe A, Maloyan A, Osinska H, Klevitsky R, Robbins J (2008) Cardiomyocyte expression of a polyglutamine preamyloid oligomer causes heart failure. Circulation 117:2743–2751PubMedPubMedCentralCrossRefGoogle Scholar
  73. Pearson TA, Mensah GA, Alexander RW et al (2003) Markers of inflammation and cardiovascular disease: application to clinical and public health practice: a statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation 107:499–511PubMedCrossRefGoogle Scholar
  74. Powers SK, Smuder AJ, Kavazis AN, Quindry JC (2014) Mechanisms of exercise-induced cardioprotection. Physiology (Bethesda) 29:27–38Google Scholar
  75. Quindry JC, Hamilton KL, French JP et al (2007) Exercise-induced HSP-72 elevation and cardioprotection against infarct and apoptosis. J Appl Physiol (1985) 103:1056–1062CrossRefGoogle Scholar
  76. Radford NB, Fina M, Benjamin IJ et al (1996) Cardioprotective effects of 70-kDa heat shock protein in transgenic mice. Proc Natl Acad Sci U S A 93:2339–2342PubMedPubMedCentralCrossRefGoogle Scholar
  77. Ricci R, Sumara G, Sumara I et al (2004) Requirement of JNK2 for scavenger receptor A-mediated foam cell formation in atherogenesis. Science 306:1558–1561PubMedCrossRefGoogle Scholar
  78. Schell MT, Spitzer AL, Johnson JA, Lee D, Harris HW (2005) Heat shock inhibits NF-kB activation in a dose- and time-dependent manner. J Surg Res 129:90–93PubMedCrossRefGoogle Scholar
  79. Selkirk GA, McLellan TM, Wright HE, Rhind SG (2008) Mild endotoxemia, NF-kappaB translocation, and cytokine increase during exertional heat stress in trained and untrained individuals. Am J Physiol Regul Integr Comp Physiol 295:R611–R623PubMedCrossRefGoogle Scholar
  80. Selzner N, Rudiger H, Graf R, Clavien P-A (2003) Protective strategies against ischemic injury of the liver. Gastroenterology 125:917–936PubMedCrossRefGoogle Scholar
  81. Shi Y, Tu Z, Tang D et al (2006) The inhibition of LPS-induced production of inflammatory cytokines by HSP70 involves inactivation of the NF-kappaB pathway but not the MAPK pathways. Shock 26:277–284PubMedCrossRefGoogle Scholar
  82. Silver JT, Kowalchuk H, Noble EG (2012) hsp70 mRNA temporal localization in rat skeletal myofibers and blood vessels post-exercise. Cell Stress Chaperones 17:109–120PubMedCrossRefGoogle Scholar
  83. Singh IS, He JR, Hester L, Fenton MJ, Hasday JD (2004) Bacterial endotoxin modifies heat shock factor-1 activity in RAW 264.7 cells: implications for TNF-alpha regulation during exposure to febrile range temperatures. J Endotoxin Res 10:175–184PubMedCrossRefGoogle Scholar
  84. Snowling NJ, Hopkins WG (2006) Effects of different modes of exercise training on glucose control and risk factors for complications in type 2 diabetic patients: a meta-analysis. Diabetes Care 29:2518–2527PubMedCrossRefGoogle Scholar
  85. Sun D, Chen D, Du B, Pan J (2005) Heat shock response inhibits NF-κB activation and cytokine production in murine Kupffer cells. J Surg Res 129:114–121PubMedCrossRefGoogle Scholar
  86. Sun X-C, Xian X-H, Li W-B et al (2010) Activation of p38 MAPK participates in brain ischemic tolerance induced by limb ischemic preconditioning by up-regulating HSP 70. Exp Neurol 224:347–355PubMedCrossRefGoogle Scholar
  87. Tsuzuki T, Kobayashi H, Yoshihara T, Kakigi R, Ichinoseki-Sekine N, Naito H (2017) Attenuation of exercise-induced heat shock protein 72 expression blunts improvements in whole-body insulin resistance in rats with type 2 diabetes. Cell Stress Chaperones 22:263–269PubMedPubMedCentralCrossRefGoogle Scholar
  88. Turjanski A, Vaque J, Gutkind J (2007) MAP kinases and the control of nuclear events. Oncogene 26:3240–3253PubMedCrossRefGoogle Scholar
  89. Uchiyama T, Atsuta H, Utsugi T et al (2006) Simvastatin induces heat shock factor 1 in vascular endothelial cells. Atherosclerosis 188:265–273PubMedCrossRefGoogle Scholar
  90. Uchiyama T, Atsuta H, Utsugi T et al (2007) HSF1 and constitutively active HSF1 improve vascular endothelial function (heat shock proteins improve vascular endothelial function). Atherosclerosis 190:321–329PubMedCrossRefGoogle Scholar
  91. Uysal KT, Wiesbrock SM, Marino MW, Hotamisligil GS (1997) Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature 389(6651):610–614PubMedCrossRefGoogle Scholar
  92. Valko M, Rhodes C, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160:1–40PubMedCrossRefGoogle Scholar
  93. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84PubMedCrossRefGoogle Scholar
  94. van Eden W, van der Zee R, Prakken B (2005) Heat-shock proteins induce T-cell regulation of chronic inflammation. Nat Rev Immunol 5:318–330PubMedCrossRefGoogle Scholar
  95. Vider J, Laaksonen DE, Kilk A et al (2001) Physical exercise induces activation of NF-kappaB in human peripheral blood lymphocytes. Antioxid Redox Signal 3:1131–1137PubMedCrossRefGoogle Scholar
  96. Wang Y, Li C, Wang X, Zhang J, Chang Z (2002) Heat shock response inhibits IL-18 expression through the JNK pathway in murine peritoneal macrophages. Biochem Biophys Res Commun 296:742–748PubMedCrossRefGoogle Scholar
  97. Wang Z, Gall JM, Bonegio RG et al (2011) Induction of heat shock protein 70 inhibits ischemic renal injury. Kidney Int 79:861–870PubMedCrossRefGoogle Scholar
  98. WHO (2017) Cardiovascular diseases (CVDs)Google Scholar
  99. Yang CW, Li C, Jung JY et al (2003) Preconditioning with erythropoietin protects against subsequent ischemia-reperfusion injury in rat kidney. FASEB J 17:1754–1755PubMedCrossRefGoogle Scholar
  100. Yenari MA, Liu J, Zheng Z, Vexler ZS, Lee JE, Giffard RG (2005) Antiapoptotic and anti-inflammatory mechanisms of heat-shock protein protection. Ann N Y Acad Sci 1053:74–83PubMedCrossRefGoogle Scholar
  101. Yoo CG, Lee S, Lee CT, Kim YW, Han SK, Shim YS (2000) Anti-inflammatory effect of heat shock protein induction is related to stabilization of I kappa B alpha through preventing I kappa B kinase activation in respiratory epithelial cells. J Immunol 164:5416–5423PubMedCrossRefGoogle Scholar
  102. Zierath JR, Krook A, Wallberg-Henriksson H (2000) Insulin action and insulin resistance in human skeletal muscle. Diabetologia 43:821–835PubMedCrossRefGoogle Scholar
  103. Zuhl MN, Lanphere KR, Kravitz L et al (2014) Effects of oral glutamine supplementation on exercise-induced gastrointestinal permeability and tight junction protein expression. J Appl Physiol (1985) 116:183–191CrossRefGoogle Scholar
  104. Zuhl M, Dokladny K, Mermier C, Schneider S, Salgado R, Moseley P (2015) The effects of acute oral glutamine supplementation on exercise-induced gastrointestinal permeability and heat shock protein expression in peripheral blood mononuclear cells. Cell Stress Chaperones 20:85–93PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Exercise Science Program, Department of Health, Exercise, and Sports SciencesUniversity of New MexicoAlbuquerqueUSA

Personalised recommendations