Advertisement

Heat Shock Response and Metabolism in Skeletal Muscle

  • Yuki TamuraEmail author
Chapter
Part of the Heat Shock Proteins book series (HESP, volume 17)

Abstract

Skeletal muscle comprises approximately 40% of the total body mass in humans. It plays important roles in locomotion, metabolism and endocrine signaling. We and others have previously described the biological responses/adaptations of skeletal muscle to heat stress, the contributions of heat shock proteins to the cellular processes underlying the muscle response to heat stress, and the therapeutic potential of manipulating heat stress and heat shock proteins in skeletal muscle. In this chapter, I briefly summarize current understanding of the heat stress-induced regulation of protein, glucose and mitochondrial metabolism in skeletal muscle. Furthermore, I overview future perspectives on studies of the heat shock response in skeletal muscle biology.

Keywords

Atrophy Glucose Heat shock proteins Hypertrophy Mitochondria Skeletal muscle 

Abbreviations

AMPK

AMP-activated protein kinase

BGP-15

O-[3-piperidino-2-hydroxy-1-propyl]-nicotinic amidoxime

CaMKII

Ca2+/calmodulin-dependent protein kinase II

DEPTORDEP

domain-containing mTOR-interacting protein

FOXO

forkhead box O

GLUT

glucose transporter

HSE

heat shock element

HSF1

heat shock factor 1

HSP

heat shock protein

IGF-1

insulin-like growth factor 1

JNK

c-Jun N-terminal kinases

LC3

microtubule-associated proteins 1A/1B light chain 3

MAPK

mitogen-activated protein kinase

MFN2

mitofusion 2

MLST8

MTOR associated protein

mTOR

mechanistic target of rapamycin

NRF

nuclear respiratory factor

PGC-1α

peroxisome proliferator-activated receptor gamma coactivator 1-alpha

PP2A

protein phosphatase 2

PPAR

peroxisome proliferator-activated receptor

PRAS

proline-rich Akt substrate

RAPTOR

regulatory-associated protein

ROS

reactive oxygen species

UPR

unfolded protein response

VDAC

voltage-dependent anion channels

Notes

Acknowledgements

Yuki Tamura is the recipient of a post-doctoral fellowship from the Japan Society for the Promotion of Science, Tokyo, Japan.

References

  1. Agudelo LZ, Femenía T, Orhan F, Porsmyr-Palmertz M, Goiny M, Martinez-Redondo V et al (2014) Skeletal muscle PGC-1α1 modulates kynurenine metabolism and mediates resilience to stress-induced depression. Cell 159(1):33–45PubMedCrossRefGoogle Scholar
  2. Bonaldo P, Sandri M (2013) Cellular and molecular mechanisms of muscle atrophy. Dis Model Mech 6(1):25–39PubMedPubMedCentralCrossRefGoogle Scholar
  3. Carter HN, Chen CCW, Hood DA (2015) Mitochondria, muscle health, and exercise with advancing age. Physiology 30(3):208–223PubMedCrossRefGoogle Scholar
  4. Chou S-D, Prince T, Gong J, Calderwood SK (2012) mTOR is essential for the proteotoxic stress response, HSF1 activation and heat shock protein synthesis. PLoS One 7(6):e39679PubMedPubMedCentralCrossRefGoogle Scholar
  5. DeFronzo RA, Alvestrand A, Smith D, Hendler R, Hendler E, Wahren J (1981) Insulin resistance in uremia. J Clin Investig 67(2):563–568PubMedCrossRefGoogle Scholar
  6. Drake JC, Yan Z (2017) Mitophagy in maintaining skeletal muscle mitochondrial proteostasis and metabolic health with aging. J Physiol.  https://doi.org/10.1113/JP274337 PubMedPubMedCentralCrossRefGoogle Scholar
  7. Drew BG, Ribas V, Le JA, Henstridge DC, Phun J, Zhou Z et al (2014) HSP72 is a mitochondrial stress sensor critical for Parkin action, oxidative metabolism, and insulin sensitivity in skeletal muscle. Diabetes 63(5):1488–1505PubMedPubMedCentralCrossRefGoogle Scholar
  8. Fitts RH, Booth FW, Winder WW, Holloszy JO (1975) Skeletal muscle respiratory capacity, endurance, and glycogen utilization. Am J Phys 228(4):1029–1033CrossRefGoogle Scholar
  9. Gomez-Pastor R, Burchfiel ET, Thiele DJ (2017) Regulation of heat shock transcription factors and their roles in physiology and disease. Nat Rev Mol Cell Biol.  https://doi.org/10.1038/nrm.2017.73 PubMedPubMedCentralCrossRefGoogle Scholar
  10. Goto A, Egawa T, Sakon I, Oshima R, Ito K, Serizawa Y et al (2015) Heat stress acutely activates insulin-independent glucose transport and 5′-AMP-activated protein kinase prior to an increase in HSP72 protein in rat skeletal muscle. Physiol Rep 3(11):e12601PubMedPubMedCentralCrossRefGoogle Scholar
  11. Gupte AA, Bomhoff GL, Swerdlow RH, Geiger PC (2009) Heat treatment improves glucose tolerance and prevents skeletal muscle insulin resistance in rats fed a high-fat diet. Diabetes 58(3):567–578PubMedPubMedCentralCrossRefGoogle Scholar
  12. Gwag T, Park K, Park J, Lee JH, Nikawa T, Choi I (2015) Celastrol overcomes HSP72 gene silencing-mediated muscle atrophy and induces myofiber preservation. J Physiol Pharmacol 66(2):173–283Google Scholar
  13. Hancock CR, Han DH, Chen M, Terada S, Yasuda T, Wright DC, Holloszy JO (2008) High-fat diets cause insulin resistance despite an increase in muscle mitochondria. Proc Natl Acad Sci 105(22):7815–7820PubMedCrossRefGoogle Scholar
  14. Henstridge DC, Bruce CR, Drew BG, Tory K, Kolonics A, Estevez E et al (2014) Activating HSP72 in rodent skeletal muscle increases mitochondrial number and oxidative capacity and decreases insulin resistance. Diabetes 63(6):1881–1894PubMedPubMedCentralCrossRefGoogle Scholar
  15. Hood DA, Tryon LD, Vainshtein A, Memme J, Chen C, Pauly M et al (2015) Exercise and the regulation of mitochondrial turnover. Prog Mol Biol Transl Sci 135:99–127PubMedCrossRefGoogle Scholar
  16. Hood DA, Tryon LD, Carter HN, Kim Y, Chen CC (2016) Unravelling the mechanisms regulating muscle mitochondrial biogenesis. Biochem J 473(15):2295–2314PubMedCrossRefGoogle Scholar
  17. Hooper PL (1999) Hot-tub therapy for type 2 diabetes mellitus. N Engl J Med 341(12):924–925PubMedCrossRefGoogle Scholar
  18. Kakigi R, Naito H, Ogura Y, Kobayashi H, Saga N, Ichinoseki-Sekine N et al (2011) Heat stress enhances mTOR signaling after resistance exercise in human skeletal muscle. J Physiol Sci 61(2):131–140.  https://doi.org/10.1007/s12576-010-0130-y PubMedCrossRefGoogle Scholar
  19. Kim Y, Triolo M, Hood DA (2017) Impact of aging and exercise on mitochondrial quality control in skeletal muscle. Oxidative Med Cell Longev 2017.  https://doi.org/10.1155/2017/3165396 Google Scholar
  20. Koshinaka K, Kawamoto E, Abe N, Toshinai K, Nakazato M, Kawanaka K (2013) Elevation of muscle temperature stimulates muscle glucose uptake in vivo and in vitro. J Physiol Sci 63(6):409–418PubMedCrossRefGoogle Scholar
  21. Li J, Labbadia J, Morimoto RI (2017) Trends Cell Biol.  https://doi.org/10.1016/j.tcb.2017.08.002 PubMedPubMedCentralCrossRefGoogle Scholar
  22. Liu CT, Brooks GA (2012) Mild heat stress induces mitochondrial biogenesis in C2C12 myotubes. J Appl Physiol 112(3):354–361PubMedCrossRefGoogle Scholar
  23. Ma X, Xu L, Alberobello AT, Gavrilova O, Bagattin A, Skarulis M et al (2015) Celastrol protects against obesity and metabolic dysfunction through activation of a HSF1-PGC1α transcriptional axis. Cell Metab 22(4):695–708PubMedCrossRefGoogle Scholar
  24. Morton JP, Kayani AC, McArdle A, Drust B (2009) The exercise-induced stress response of skeletal muscle, with specific emphasis on humans. Sports Med 39(8):643–662PubMedCrossRefGoogle Scholar
  25. Naito H, Yoshihara T, Kakigi R, Ichinoseki-Sekine N, Tsuzuki T (2012) Heat stress-induced changes in skeletal muscle: heat shock proteins and cell signaling transduction. J Phys Fit Sports Med 1(1):125–131CrossRefGoogle Scholar
  26. Ohno Y, Egawa T, Yokoyama S, Nakai A, Sugiura T, Ohira Y et al (2015) Deficiency of heat shock transcription factor 1 suppresses heat stress-associated increase in slow soleus muscle mass of mice. Acta Physiol 215(4):191–203CrossRefGoogle Scholar
  27. Oishi Y, Ogata T (2012) Skeletal muscle fiber plasticity: heat shock proteins and satellite cell activation. J Phys Fitness Sports Med 1(3):473–478CrossRefGoogle Scholar
  28. Powers SK, Wiggs MP, Duarte JA, Zergeroglu AM, Demirel HA (2012) Mitochondrial signaling contributes to disuse muscle atrophy. Am J Physiol Endocrinol Metab 303(1):E31–E39PubMedPubMedCentralCrossRefGoogle Scholar
  29. Qiao A, Jin X, Pang J, Moskophidis D, Mivechi NF (2017) The transcriptional regulator of the chaperone response HSF1 controls hepatic bioenergetics and protein homeostasis. J Cell Biol 216(3):723–741PubMedPubMedCentralCrossRefGoogle Scholar
  30. Sanchez AMJ, Candau RB, Csibi A, Pagano AF, Raibon A, Bernardi H (2012) The role of AMP-activated protein kinase in the coordination of skeletal muscle turnover and energy homeostasis. Am J Physiol Cell Physiol 303(5):C475–C485PubMedCrossRefGoogle Scholar
  31. Sarangi U, Singh MK, Abhijnya KVV, Prasanna Anjaneya Reddy L, Siva Prasad A, Pitke VV et al (2013) Hsp60 chaperonin acts as barrier to pharmacologically induced oxidative stress mediated apoptosis in tumor cells with differential stress response. Drug Target Insights 2013(7):35–51Google Scholar
  32. Schlesinger MJ (1990) Heat shock proteins. J Biol Chem 265(21):12111–12114PubMedGoogle Scholar
  33. Schnyder S, Handschin C (2015) Skeletal muscle as an endocrine organ: PGC-1α, myokines and exercise. Bone 80:115–125PubMedPubMedCentralCrossRefGoogle Scholar
  34. Tamura Y, Hatta H (2017) Heat stress induces mitochondrial adaptations in skeletal muscle. J Phys Fit Sports Med 6(3):151–158CrossRefGoogle Scholar
  35. Tamura Y, Matsunaga Y, Masuda H, Takahashi Y, Takahashi Y, Terada S et al (2014) Postexercise whole body heat stress additively enhances endurance training-induced mitochondrial adaptations in mouse skeletal muscle. Am J Physiol Regul Integr Comp Physiol 307(7):R931–R943PubMedCrossRefGoogle Scholar
  36. Tamura Y, Kitaoka Y, Matsunaga Y, Hoshino D, Hatta H (2015) Daily heat stress treatment rescues denervation-activated mitochondrial clearance and atrophy in skeletal muscle. J Physiol 593(12):2707–2720PubMedPubMedCentralCrossRefGoogle Scholar
  37. Tamura Y, Matsunaga Y, Kitaoka Y, Hatta H (2017) Effects of heat stress treatment on age-dependent unfolded protein response in different types of skeletal muscle. J Gerontol A Biol Sci Med Sci 72(3):299–308PubMedGoogle Scholar
  38. Tezze C, Romanello V, Desbats MA, Fadini GP, Albiero M, Favaro G et al (2017) Age-associated loss of OPA1 in muscle impacts muscle mass, metabolic homeostasis, systemic inflammation, and epithelial senescence. Cell Metab 25(6):1374–1389PubMedPubMedCentralCrossRefGoogle Scholar
  39. Tryon LD, Vainshtein A, Memme JM, Crilly MJ, Hood DA (2014) Recent advances in mitochondrial turnover during chronic muscle disuse. Integr Med Res 3(4):161–171PubMedPubMedCentralCrossRefGoogle Scholar
  40. Tsuchida W, Iwata M, Akimoto T, Matsuo S, Asai Y, Suzuki S (2017) Heat stress modulates both anabolic and catabolic signaling pathways preventing dexamethasone-induced muscle atrophy in vitro. J Cell Physiol 232(3):650–664PubMedCrossRefGoogle Scholar
  41. Tsuzuki T, Kobayashi H, Yoshihara T, Kakigi R, Ichinoseki-Sekine N, Naito H (2017) Attenuation of exercise-induced heat shock protein 72 expression blunts improvements in whole-body insulin resistance in rats with type 2 diabetes. Cell Stress Chaperones 22(2):263–269PubMedPubMedCentralCrossRefGoogle Scholar
  42. Wang T, Yu Q, Chen J, Deng B, Qian L, Le Y (2010) PP2A mediated AMPK inhibition promotes HSP70 expression in heat shock response. PLoS One 5(10):e13096.  https://doi.org/10.1371/journal.pone.0013096 PubMedPubMedCentralCrossRefGoogle Scholar
  43. Yamaguchi T, Omori M, Tanaka N, Fukui N (2013) Distinct and additive effects of sodium bicarbonate and continuous mild heat stress on fiber type shift via calcineurin/NFAT pathway in human skeletal myoblasts. Am J Physiol Cell Physiol 305(3):C323–C333PubMedCrossRefGoogle Scholar
  44. Yoon MS (2017) mTOR as a key regulator in maintaining skeletal muscle mass. Front Physiol 8:00788CrossRefGoogle Scholar
  45. Yoshihara T, Naito H, Kakigi R, Ichinoseki-Sekine N, Ogura Y, Sugiura T, Katamoto S (2013) Heat stress activates the Akt/mTOR signalling pathway in rat skeletal muscle. Acta Physiol 207(2):416–426CrossRefGoogle Scholar
  46. Yoshihara T, Sugiura T, Yamamoto Y, Shibaguchi T, Kakigi R, Naito H (2015) The response of apoptotic and proteolytic systems to repeated heat stress in atrophied rat skeletal muscle. Physiol Rep 3(10):e12597PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Graduate School of Health and Sport ScienceNippon Sport Science UniversityTokyoJapan
  2. 2.Faculty of Sport ScienceNippon Sport Science UniversityTokyoJapan
  3. 3.Center for Coaching ExcellenceNippon Sport Science UniversityTokyoJapan
  4. 4.Research Institute for Sport ScienceNippon Sport Science UniversityTokyoJapan

Personalised recommendations