Heat Shock Proteins in Digestive Tract Cancer: Molecular Mechanism and Therapeutic Potential

  • Liang Wenjin
  • Li Zeming
  • Liao Yong
  • Wang Yan
  • Tang Bo
Part of the Heat Shock Proteins book series (HESP, volume 17)


Heat Shock Proteins (HSP) are a category of proteins for stress regulation being highly conservative in respect of evolutionary sequence, which mainly consist of HSP10, HSP27, HSP40, HSP60, HSP70, HSP90, HSP110 and multiple sub-types thereof. The main function is to maintain the normal functional structure of proteins through the molecular chaperone role. Simultaneously, it can also play a role of cell protection and immunoregulation. The expression of HSP is extensively high in digestive tract cancer and closely related to multiple biological functions such as tumor cell proliferation, cell apoptosis, cell cycle, invasion and migration and drug resistance in chemical therapy, etc. Simultaneously, it has also verified that the inhibitor of HSP can resist the tumor promotion effect effectively in vitro and in vivo. However, the current researches are being concentrated on the inhibitors of HSP70 and HSP90. Further clinic research verification is also needed. In summary, HSP are not only potential tumor biomarkers in early diagnosis and prognosis monitoring to digestive tract cancer, but also a potential target for effective therapy to tumors.


Clinical applications Digestive tract cancer Heat shock proteins Molecular mechanism Therapeutics 



bile duct epithelial cells




cytotoxic T lymphocyte


esophageal squamous cell cancer


hepatocellular carcinoma


heat shock proteins



We wish to particularly acknowledge Prof. He Songqing and Prof. Yang Jinghong. Department of Hepatobiliary Surgery, Guilin Medical University. And Prof. Ye Qifa. Institute of Hepatobiliary disease, Wuhan University. For they helped to revise the manuscript and make valuable Suggestions.


  1. Aghdassi A, Phillips P, Dudeja V et al (2007) Heat shock protein 70 increases tumorigenicity and inhibits apoptosis in pancreatic adenocarcinoma. Cancer Res 67(2):616PubMedGoogle Scholar
  2. Akiharu K, Kyoichi O, Bolag A et al (2016) Nuclear heat shock protein 110 expression is associated with poor prognosis and chemotherapy resistance in gastric cancer. Oncotarget 7(14):18415–18423Google Scholar
  3. Aneta T, Tomasz B, Piotr P et al (2012) Helicobacter pyloripromotes apoptosis, activates cyclooxygenase (COX)-2 and inhibits heat shock protein HSP70 in gastric cancer epithelial cells. Inflamm Res 61(9):955Google Scholar
  4. Bodoor K, Jalboush SA, Matalka I et al (2016) Heat shock protein association with clinico-pathological characteristics of gastric cancer in Jordan: HSP70 is predictive of poor prognosis. Asian Pac J Cancer Prev APJCP 17(8):3929PubMedGoogle Scholar
  5. Cercek A, Shia J, Gollub M et al (2014) Ganetespib, a novel Hsp90 inhibitor in patients with KRAS mutated and wild type, refractory metastatic colorectal cancer. Clin Colorectal Cancer 13(4):207–212PubMedPubMedCentralGoogle Scholar
  6. Chen R, Dai RY, Duan CY et al (2011) Unfolded protein response suppresses cisplatin-induced apoptosis via autophagy regulation in human hepatocellular carcinoma cells. Folia Biol 57(3):87Google Scholar
  7. Chen MH, Lin KJ, Yang WL et al (2013) Gene expression-based chemical genomics identifies heat-shock protein 90 inhibitors as potential therapeutic drugs in cholangiocarcinoma. Cancer 119(2):293–303PubMedGoogle Scholar
  8. Chen MH, Chiang KC, Cheng CT et al (2014) Antitumor activity of the combination of an HSP90 inhibitor and a PI3K/mTOR dual inhibitor against cholangiocarcinoma. Oncotarget 5(9):2372–2389PubMedPubMedCentralGoogle Scholar
  9. Chen W, Zheng R, Baade PD et al (2016) Cancer statistics in China, 2015. CA Cancer J Clin 66(2):115Google Scholar
  10. Choi DH, Woo JK, Choi Y et al (2011) A novel chimeric DNA vaccine: enhancement of preventive and therapeutic efficacy of DNA vaccine by fusion of Mucin 1 to a heat shock protein 70 gene. Mol Med Rep 4(5):885PubMedGoogle Scholar
  11. Ciocca DR, Calderwood SK (2005) Heat shock proteins in cancer: diagnostic, prognostic, predictive, and therapy implications. Cell Stress Chaperones 10(2):86PubMedPubMedCentralGoogle Scholar
  12. Deng W, Zhang Y, Luo G et al (2016) Heat shock protein 27 downstream of P38-PI3K/Akt signaling antagonizes melatonin-induced apoptosis of SGC-7901 gastric cancer cells. Cancer Cell Int 16(1):5PubMedPubMedCentralGoogle Scholar
  13. Evans CG, Chang L, Gestwicki JE (2010) Heat shock protein 70 (hsp70) as an emerging drug target. J Med Chem 53(12):4585–4602PubMedPubMedCentralGoogle Scholar
  14. Farkas R, Pozsgai E, Bellyei S et al (2011) Correlation between tumor-associated proteins and response to neoadjuvant therapy in patients with advanced squamous-cell esophageal cancer. Anticancer Res 31(5):1769–1775PubMedGoogle Scholar
  15. Gatto M, Bragazzi MC, Semeraro R et al (2010) Cholangiocarcinoma: update and future perspectives. Dig Liver Dis 42(4):253–260PubMedGoogle Scholar
  16. Giaginis C, Daskalopoulou SS, Vgenopoulou S et al (2009) Heat shock protein-27, -60 and -90 expression in gastric cancer: association with clinicopathological variables and patient survival[J]. BMC Gastroenterol 9(1):14PubMedPubMedCentralGoogle Scholar
  17. Gress TM, Müllerpillasch F, Weber C et al (1994) Differential expression of heat shock proteins in pancreatic carcinoma. Cancer Res 54(2):547PubMedGoogle Scholar
  18. Gunaldi M, Kocoglu H, Okuturlar Y et al (2015) Heat shock protein 70 is a useful marker for predicting colorectal cancer.[J]. J Buon 20(6):1464–1470PubMedGoogle Scholar
  19. Guo K, Kang NX, Li Y et al (2009) Regulation of HSP27 on NF-κB pathway activation may be involved in metastatic hepatocellular carcinoma cells apoptosis. BMC Cancer 9(1):100PubMedPubMedCentralGoogle Scholar
  20. Hang Z, Wei C, Duan CJ et al (2013) Overexpression of HSPA2 is correlated with poor prognosis in esophageal squamous cell carcinoma. World J Surg Oncol 11(1):141–141Google Scholar
  21. He B, Wang X, Shi HS et al (2013) Quercetin liposome sensitizes colon carcinoma to thermotherapy and thermochemotherapy in mice models. Integr Cancer Ther 12(3):264–270PubMedGoogle Scholar
  22. Iqbal MK, Zargar MA, Mudassar S et al (2016) Expression profiling and cellular localization of stress responsive proteins in squamous cell carcinoma of human esophagus. Cancer Investig 34(6):237–245Google Scholar
  23. Kamal A, Thao L, Sensintaffar J et al (2003) A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 425(6956):407PubMedGoogle Scholar
  24. Kamoshida S, Satoh Y, Kamiya S et al (1999) Heat shock protein 60 (HSP60) immunoreactivity in gastric epithelium associated with Helicobacter pylori infection: a pitfall in immunohistochemically interpreting HSP60-mediated autoimmune responses. Pathol Int 49(1):88–90PubMedGoogle Scholar
  25. Kang Y, Jung WY, Lee H et al (2013) Prognostic significance of heat shock protein 70 expression in early gastric carcinoma. Korean J Pathol 47(3):219–226PubMedPubMedCentralGoogle Scholar
  26. Kang Q, Cai JB, Dong RZ et al (2017) Mortalin promotes cell proliferation and epithelial mesenchymal transition of intrahepatic cholangiocarcinoma cells in vitro. J Clin Pathol 70(8):677–683PubMedGoogle Scholar
  27. Lagana SM, Remotti H, Moreira RK et al (2013) Glutamine synthetase, heat-shock protein 70, and glypican-3 in intrahepatic cholangiocarcinoma. Appl Immunohistochem Mol Morphol AIMM 21(3):254–257PubMedGoogle Scholar
  28. Lang SA, Moser C, Fichnterfeigl S et al (2009) Targeting heat-shock protein 90 improves efficacy of rapamycin in a model of hepatocellular carcinoma in mice. Hepatology 49(2):523–532PubMedGoogle Scholar
  29. Lee HW, Kwon J, Kang MC et al (2016) Overexpression of HSP47 in esophageal squamous cell carcinoma: clinical implications and functional analysis. Dis Esophagus 29(7):848–855PubMedGoogle Scholar
  30. Leng AM, Liu T, Yang J et al (2012) The apoptotic effect and associated signalling of HSP90 inhibitor 17-DMAG in hepatocellular carcinoma cells. Cell Biol Int 36(10):893PubMedGoogle Scholar
  31. Leung AM, Redlak MJ, Miller TA (2015) Role of heat shock proteins in oxygen radical-induced gastric apoptosis. J Surg Res 193(1):135–144PubMedGoogle Scholar
  32. Liu CC, Jan YJ, Ko BS et al (2014) 14-3-3σ induces heat shock protein 70 expression in hepatocellular carcinoma. BMC Cancer 14(1):425PubMedPubMedCentralGoogle Scholar
  33. Lu WJ, Lee NP, Fatima S et al (2009) Heat shock proteins in cancer: signaling pathways, tumor markers and molecular targets in liver malignancy. Protein Pept Lett 16(5):508–516PubMedGoogle Scholar
  34. Maitra A, Iacobuziodonahue C, Rahman A et al (2002) Immunohistochemical validation of a novel epithelial and a novel stromal marker of pancreatic ductal adenocarcinoma identified by global expression microarrays: sea urchin fascin homolog and heat shock protein 47. Am J Clin Pathol 118(1):52–59PubMedGoogle Scholar
  35. Matsushima-Nishiwaki R, Hidenori T, Tomoaki N et al (2016) Phosphorylated heat shock protein 20 (HSPB6) regulates transforming growth factor-α-induced migration and invasion of hepatocellular carcinoma cells. PLoS One 11(4):e0151907PubMedPubMedCentralGoogle Scholar
  36. Mitsuru O, Ichiro Y, Seiji A et al (2016) The significance of phosphorylated heat shock protein 27 on the prognosis of pancreatic cancer. Oncotarget 7(12):14291–14299Google Scholar
  37. Morita R, Nishizawa S, Torigoe T et al (2014) Heat shock protein DNAJB8 is a novel target for immunotherapy of colon cancer-initiating cells. Cancer Sci 105(4):389–395PubMedPubMedCentralGoogle Scholar
  38. Moseley PL (1998) Heat shock proteins and the inflammatory response. Ann N Y Acad Sci 856(1):206–213PubMedGoogle Scholar
  39. Noguchi T, Wada S, Takeno S et al (2003) Lymph node metastasis could be predicted by evaluation of macrophage infiltration and hsp70 expression in superficial carcinoma of the esophagus. Oncol Rep 10(5):1161–1164PubMedGoogle Scholar
  40. Ogata M, Naito Z, Tanaka S et al (2000) Overexpression and localization of heat shock proteins mRNA in pancreatic carcinoma. J Nippon Med Sch Nippon Ika Daigaku Zasshi 67(3):177PubMedGoogle Scholar
  41. Phillips PA, Dudeja V, Mccarroll JA et al (2007) Triptolide induces pancreatic cancer cell death via inhibition of heat shock protein 70. Cancer Res 67(19):9407PubMedGoogle Scholar
  42. Rappa F, Sciume C, Lo BM et al (2014) Comparative analysis of Hsp10 and Hsp90 expression in healthy mucosa and adenocarcinoma of the large bowel. Anticancer Res 34(8):4153PubMedGoogle Scholar
  43. Rohde M, Daugaard M, Jensen MH et al (2005) Members of the heat-shock protein 70 family promote cancer cell growth by distinct mechanisms. Genes Dev 19(5):570–582PubMedPubMedCentralGoogle Scholar
  44. Sato Y, Harada K, Sasaki M et al (2012) Heat shock proteins 27 and 70 are potential biliary markers for the detection of cholangiocarcinoma. Am J Pathol 180(1):123–130PubMedGoogle Scholar
  45. Sawyer DB (2006) Heat shock proteins in cancer: chaperones of tumorigenesis. Trends Biochem Sci 31(3):164PubMedGoogle Scholar
  46. Schopf FH, Biebl MM, Buchner J (2008) The HSP90 chaperone machinery. J Biol Chem 283(27):18473–18477Google Scholar
  47. Shaib Y, Elserag HB (2004) The epidemiology of cholangiocarcinoma. Semin Liver Dis 24(2):115–125PubMedGoogle Scholar
  48. Sharma A, Upadhyay AK, Bhat MK (2010) Inhibition of Hsp27 and Hsp40 potentiates 5-fluorouracil and carboplatin mediated cell killing in hepatoma cells. Cancer Biol Ther 8(22):2106–2113Google Scholar
  49. Sherman M, Gabai V, O’Callaghan C et al (2007) Molecular chaperones regulate p53 and suppress senescence programs. FEBS Lett 581(19):3711PubMedPubMedCentralGoogle Scholar
  50. Shi C, He Z, Hou N et al (2014) Alpha B-crystallin correlates with poor survival in colorectal cancer. Int J Clin Exp Pathol 7(9):6056–6063PubMedPubMedCentralGoogle Scholar
  51. Siegel RL, Miller KD (2017) Cancer statistics, 2017. CA Cancer J Clin 67(1):7–30Google Scholar
  52. So AI, Black PC, Chi KN et al (2012) A phase I trial of intravesical antisense oligonucleotide targeting heat shock protein 27 (OGX-427) for the therapy of non-muscle-invasive bladder cancer. J Chem Phys 141(10):104104–104104Google Scholar
  53. Takeno S, Noguchi T, Takahashi Y et al (2010) Immunohistochemical and clinicopathologic analysis of response to neoadjuvant therapy for esophageal squamous cell carcinoma. Dis Esophagus Off J Int Soc Dis Esophagus 14(2):149–154Google Scholar
  54. Tang D, Khaleque MA, Jones EL et al (2015) Expression of heat shock proteins and HSP messenger ribonucleic acid in human prostate carcinoma in vitro and in tumors in vivo. Cell Stress Chaperones 10(1):46–58Google Scholar
  55. Wang C, Jiang K, Kang X et al (2012) Tumor-derived secretory clusterin induces epithelial-mesenchymal transition and facilitates hepatocellular carcinoma metastasis. Int J Biochem Cell Biol 44(12):2308–2320PubMedGoogle Scholar
  56. Wang C, Jiang K, Gao D et al (2013a) Clusterin protects hepatocellular carcinoma cells from endoplasmic reticulum stress induced apoptosis through GRP78. PLoS One 8(2):e55981PubMedPubMedCentralGoogle Scholar
  57. Wang J, Cui S, Zhang X, Wu Y, Tang H et al (2013b) High expression of heat shock protein 90 is associated with tumor aggressiveness and poor prognosis in patients with advanced gastric cancer. PLoS One 8(4):e62876PubMedPubMedCentralGoogle Scholar
  58. Wang B, Chen L, Ni Z et al (2014a) Hsp90 inhibitor 17-AAG sensitizes Bcl-2 inhibitor (-)-gossypol by suppressing ERK-mediated protective autophagy and Mcl-1 accumulation in hepatocellular carcinoma cells. Exp Cell Res 328(2):379–387PubMedGoogle Scholar
  59. Wang W, Ji W, Hu H et al (2014b) Survivin promoter-regulated oncolytic adenovirus with Hsp70 gene exerts effective antitumor efficacy in gastric cancer immunotherapy. Oncotarget 5(1):150PubMedGoogle Scholar
  60. Wang S, Du Z, Luo J et al (2015) Inhibition of heat shock protein 90 suppresses squamous carcinogenic progression in a mouse model of esophageal cancer. J Cancer Res Clin Oncol 141(8):1405–1416PubMedGoogle Scholar
  61. Wu J, Liu T, Rios Z et al (2016) Heat shock proteins and cancer. Trends Pharmacol Sci 38(3):226–256PubMedGoogle Scholar
  62. Yang YX, Sun XF, Cheng AL et al (2009) Increased expression of HSP27 linked to vincristine resistance in human gastric cancer cell line. J Cancer Res Clin Oncol 135(2):181–189PubMedGoogle Scholar
  63. Zhou X, Zhang CZ, Lu SX et al (2015) miR-625 suppresses tumour migration and invasion by targeting IGF2BP1 in hepatocellular carcinoma. Oncogene 34(8):965PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Liang Wenjin
    • 1
  • Li Zeming
    • 2
  • Liao Yong
    • 2
  • Wang Yan
    • 2
  • Tang Bo
    • 2
  1. 1.Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on TransplantationZhongnan Hospital of Wuhan UniversityWuhanChina
  2. 2.Department of Hepatobiliary SurgeryGuilin Medical University, Affiliated HospitalGuilinPeople’s Republic of China

Personalised recommendations