Advertisement

Targeting Heat Shock Proteins in Multiple Myeloma

  • Vijay P. Kale
  • Sangita Phadtare
  • Shantu G. Amin
  • Manoj K. PandeyEmail author
Chapter
Part of the Heat Shock Proteins book series (HESP, volume 17)

Abstract

The heat shock proteins (Hsp), the family of molecular chaperons, are key proteins in protein folding and maturation. The client proteins of Hsp are critical in number of biological processes including cellular proliferation, differentiation, survival, metastasis, invasion, and angiogenesis. Thus, Hsp family becomes one of the desirable targets for cancer treatment. It has been demonstrated that Hsp overexpress in multiple myeloma and linked in poor prognosis and relapse. This chapter describes about the Hsp and their possible link with the pathogenesis of multiple myeloma. It addresses the advancement and challenges in the development of Hsp inhibitors.

Keywords

Chaperons Chemo-resistance Hsp27 Hsp70 Hsp90 Multiple myeloma 

Abbreviations

ADP

Adenosine diphosphate

Aha1

activator of HSP90 ATPase activity 1

ALT

alanine aminotransferase

Apaf-1

apoptotic peptidase activating factor 1

AST

aspartate aminotransferase

ATP

adenosine triphosphate

Bax

Bcl-2-associated X

Bcl-2

B-cell lymphoma-2

Cdc37

cell division cycle 37

Chip

carboxy terminus of Hsc70 interacting protein

Cns1

tetratricopeptide repeat domain 4

CR

connecting linker region

CTD

C terminal domain

ErbB

epidermal growth factor receptor

ER

Estrogen receptor

Her3

erb-b2 receptor tyrosine kinase 3

HIF-1α

hypoxia inducible factor 1 subunit alpha

Hip

Hsc70-interacting protein

Hop

Hsp70-Hsp90 organizing protein

HSF-1

heat shock transcription factor-1, Hsp, heat shock proteins

MAPK

Mitogen-activated protein kinase 1

MEEVD

Met-Glu-Glu-Val-Asp motif

Mek1/2

mitogen activated protein kinase kinase

MD

middle domain

NF-κB

nuclear factor kappa-light-chain- enhancer of activated B cells

NTD

N terminal domain

PP5

protein phosphatase 5

p23

prostaglandin E synthase 3

Smac

second Mitochondria-derived activator of caspases

Tom70

translocase of outer mitochondrial membrane 70

TPR

tetratricopeptide repeat domains

Unc45

unc-45 myosin chaperone B

Notes

Acknowledgements

Authors are thankful for the proofreading and editing services of Cooper Medical School of Rowan University.

References

  1. Argyriou AA, Iconomou G, Kalofonos HP (2008) Bortezomib-induced peripheral neuropathy in multiple myeloma: a comprehensive review of the literature. Blood 112:1593–1599PubMedCrossRefGoogle Scholar
  2. Azad AA, Zoubeidi A, Gleave ME, Chi KN (2015) Targeting heat shock proteins in metastatic castration-resistant prostate cancer. Nat Rev Urol 12:26–36PubMedCrossRefGoogle Scholar
  3. Bailey CK, Budina-Kolomets A, Murphy ME, Nefedova Y (2015) Efficacy of the HSP70 inhibitor PET-16 in multiple myeloma. Cancer Biol Ther 16:1422–1426PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bakthisaran R, Tangirala R, Rao CM (2015) Small heat shock proteins: role in cellular functions and pathology. Biochim Biophys Acta 1854:291–319PubMedCrossRefPubMedCentralGoogle Scholar
  5. Banerji U, O’Donnell A, Scurr M et al (2005) Phase I pharmacokinetic and pharmacodynamic study of 17-allylamino, 17-demethoxygeldanamycin in patients with advanced malignancies. J Clin Oncol 23:4152–4161PubMedCrossRefGoogle Scholar
  6. Born EJ, Hartman SV, Holstein SA (2013) Targeting HSP90 and monoclonal protein trafficking modulates the unfolded protein response, chaperone regulation and apoptosis in myeloma cells. Blood Cancer J 3:e167PubMedPubMedCentralCrossRefGoogle Scholar
  7. Calderwood SK, Gong J (2016) Heat shock proteins promote cancer: it’s a protection racket. Trends Biochem Sci 41:311–323PubMedPubMedCentralCrossRefGoogle Scholar
  8. Caplan AJ (2003) What is a co-chaperone? Cell Stress Chaperones 8:105–107PubMedPubMedCentralCrossRefGoogle Scholar
  9. Cavaletti G, Jakubowiak AJ (2010) Peripheral neuropathy during bortezomib treatment of multiple myeloma: a review of recent studies. Leuk Lymphoma 51:1178–1187PubMedCrossRefPubMedCentralGoogle Scholar
  10. Cavanaugh A, Juengst B, Sheridan K, Danella JF, Williams H (2015) Combined inhibition of heat shock proteins 90 and 70 leads to simultaneous degradation of the oncogenic signaling proteins involved in muscle invasive bladder cancer. Oncotarget 6:39821–39838PubMedPubMedCentralCrossRefGoogle Scholar
  11. Chadli A, Felts SJ, Wang Q et al (2010) Celastrol inhibits Hsp90 chaperoning of steroid receptors by inducing fibrillization of the co-chaperone p23. J Biol Chem 285:4224–4231PubMedCrossRefGoogle Scholar
  12. Chatterjee S, Burns TF (2017) Targeting heat shock proteins in cancer: a promising therapeutic approach. Int J Mol Sci 18:E1978PubMedCrossRefPubMedCentralGoogle Scholar
  13. Chauhan D, Li G, Hideshima T et al (2003) Hsp27 inhibits release of mitochondrial protein Smac in multiple myeloma cells and confers dexamethasone resistance. Blood 102:3379–3386PubMedCrossRefPubMedCentralGoogle Scholar
  14. Chauhan D, Li G, Auclair D et al (2004) 2-Methoxyestardiol and bortezomib/proteasome-inhibitor overcome dexamethasone-resistance in multiple myeloma cells by modulating heat shock Protein-27. Apoptosis 9:149–155PubMedCrossRefPubMedCentralGoogle Scholar
  15. Chen B, Piel WH, Gui LM, Bruford E, Monteiro A (2005) The HSP90 family of genes in the human genome: insights into their divergence and evolution. Genomics 86:627–637PubMedCrossRefPubMedCentralGoogle Scholar
  16. Ciglia E, Vergin J, Reimann S et al (2014) Resolving hot spots in the C-terminal dimerization domain that determine the stability of the molecular chaperone Hsp90. PLoS One 9:e96031PubMedPubMedCentralCrossRefGoogle Scholar
  17. Ciocca DR, Calderwood SK (2005) Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones 10:86–103PubMedPubMedCentralCrossRefGoogle Scholar
  18. Colombo G, Morra G, Meli M, Verkhivker G (2008) Understanding ligand-based modulation of the Hsp90 molecular chaperone dynamics at atomic resolution. Proc Natl Acad Sci U S A 105:7976–7981PubMedPubMedCentralCrossRefGoogle Scholar
  19. Cordonnier T, Bishop JL, Shiota M et al (2015) Hsp27 regulates EGF/beta-catenin mediated epithelial to mesenchymal transition in prostate cancer. Int J Cancer 136:E496–E507PubMedCrossRefGoogle Scholar
  20. Donnelly A, Blagg BS (2008) Novobiocin and additional inhibitors of the Hsp90 C-terminal nucleotide-binding pocket. Curr Med Chem 15:2702–2717PubMedPubMedCentralCrossRefGoogle Scholar
  21. Duus J, Bahar HI, Venkataraman G et al (2006) Analysis of expression of heat shock protein-90 (HSP90) and the effects of HSP90 inhibitor (17-AAG) in multiple myeloma. Leuk Lymphoma 47:1369–1378PubMedCrossRefGoogle Scholar
  22. Flandrin P, Guyotat D, Duval A et al (2008) Significance of heat-shock protein (HSP) 90 expression in acute myeloid leukemia cells. Cell Stress Chaperones 13:357–364PubMedPubMedCentralCrossRefGoogle Scholar
  23. Flint OP, Kwagh J, Wang FY et al (2009) Tanespimycin prevents bortezomib toxicity and preserves neuronal morphology in primary rat dorsal root ganglion cultures. Blood 114:1112–1112Google Scholar
  24. Fortugno P, Beltrami E, Plescia J et al (2003) Regulation of survivin function by Hsp90. Proc Natl Acad Sci U S A 100:13791–13796PubMedPubMedCentralCrossRefGoogle Scholar
  25. Georget V, Terouanne B, Nicolas JC, Sultan C (2002) Mechanism of antiandrogen action: key role of hsp90 in conformational change and transcriptional activity of the androgen receptor. Biochemistry 41:11824–11831PubMedCrossRefGoogle Scholar
  26. Gerecitano JF, Modi S, Rampal R et al. (2015) Phase I trial of the HSP-90 inhibitor PU-H71. J Clin Oncol 33:2537CrossRefGoogle Scholar
  27. Gibert B, Eckel B, Gonin V et al (2012) Targeting heat shock protein 27 (HspB1) interferes with bone metastasis and tumour formation in vivo. Br J Cancer 107:63–70PubMedPubMedCentralCrossRefGoogle Scholar
  28. Goetz MP, Toft D, Reid J et al (2005) Phase I trial of 17-allylamino-17-demethoxygeldanamycin in patients with advanced cancer. J Clin Oncol 23:1078–1087PubMedCrossRefGoogle Scholar
  29. Guo F, Rocha K, Bali P et al (2005) Abrogation of heat shock protein 70 induction as a strategy, to increase antileukemia activity of heat shock protein 90 inhibitor 17-allylamino-demethoxy geldanamycin. Cancer Res 65:10536–10544PubMedCrossRefGoogle Scholar
  30. Hawle P, Siepmann M, Harst A, Siderius M, Reusch HP, Obermann WM (2006) The middle domain of Hsp90 acts as a discriminator between different types of client proteins. Mol Cell Biol 26:8385–8395PubMedPubMedCentralCrossRefGoogle Scholar
  31. Hieronymus H, Lamb J, Ross KN et al (2006) Gene expression signature-based chemical genomic prediction identifies a novel class of HSP90 pathway modulators. Cancer Cell 10:321–330PubMedCrossRefGoogle Scholar
  32. Holmes JL, Sharp SY, Hobbs S, Workman P (2008) Silencing of HSP90 cochaperone AHA1 expression decreases client protein activation and increases cellular sensitivity to the HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin. Cancer Res 68:1187–1196Google Scholar
  33. Jego G, Hazoume A, Seigneuric R, Garrido C (2013) Targeting heat shock proteins in cancer. Cancer Lett 332:275–285PubMedCrossRefGoogle Scholar
  34. Jhaveri K, Taldone T, Modi S, Chiosis G (2012) Advances in the clinical development of heat shock protein 90 (Hsp90) inhibitors in cancers. Biochim Biophys Acta 1823:742–755PubMedCrossRefPubMedCentralGoogle Scholar
  35. Kamal A, Thao L, Sensintaffar J et al (2003) A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 425:407–410CrossRefGoogle Scholar
  36. Kumar S, Stokes J 3rd, Singh UP et al (2016) Targeting Hsp70: a possible therapy for cancer. Cancer Lett 374:156–166PubMedPubMedCentralCrossRefGoogle Scholar
  37. Langdon SP, Rabiasz GJ, Hirst GL et al (1995) Expression of the heat shock protein HSP27 in human ovarian cancer. Clin Cancer Res 1:1603–1609PubMedPubMedCentralGoogle Scholar
  38. Lee HW, Lee EH, Kim SH, Roh MS, Jung SB, Choi YC (2013) Heat shock protein 70 (HSP70) expression is associated with poor prognosis in intestinal type gastric cancer. Virchows Arch 463:489–495PubMedCrossRefPubMedCentralGoogle Scholar
  39. Li CY, Lee JS, Ko YG, Kim JI, Seo JS (2000) Heat shock protein 70 inhibits apoptosis downstream of cytochrome c release and upstream of caspase-3 activation. J Biol Chem 275:25665–25671PubMedCrossRefGoogle Scholar
  40. Lianos GD, Alexiou GA, Mangano A et al (2015) The role of heat shock proteins in cancer. Cancer Lett 360:114–118CrossRefGoogle Scholar
  41. Liu S, Yuan Y, Okumura Y, Shinkai N, Yamauchi H (2010) Camptothecin disrupts androgen receptor signaling and suppresses prostate cancer cell growth. Biochem Biophys Res Commun 394:297–302PubMedCrossRefPubMedCentralGoogle Scholar
  42. Liu W, Vielhauer GA, Holzbeierlein JM et al (2015) KU675, a concomitant heat-shock protein inhibitor of Hsp90 and Hsc70 that manifests isoform selectivity for Hsp90alpha in prostate Cancer cells. Mol Pharmacol 88:121–130PubMedPubMedCentralCrossRefGoogle Scholar
  43. Madamanchi NR, Li S, Patterson C, Runge MS (2001) Reactive oxygen species regulate heat-shock protein 70 via the JAK/STAT pathway. Arterioscler Thromb Vasc Biol 21:321–326PubMedCrossRefGoogle Scholar
  44. Magrane J, Smith RC, Walsh K, Querfurth HW (2004) Heat shock protein 70 participates in the neuroprotective response to intracellularly expressed beta-amyloid in neurons. J Neurosci 24:1700–1706PubMedCrossRefPubMedCentralGoogle Scholar
  45. Marcu MG, Chadli A, Bouhouche I, Catelli M, Neckers LM (2000) The heat shock protein 90 antagonist novobiocin interacts with a previously unrecognized ATP-binding domain in the carboxyl terminus of the chaperone. J Biol Chem 275:37181–37186PubMedCrossRefGoogle Scholar
  46. Massey AJ, Williamson DS, Browne H et al (2010) A novel, small molecule inhibitor of Hsc70/Hsp70 potentiates Hsp90 inhibitor induced apoptosis in HCT116 colon carcinoma cells. Cancer Chemother Pharmacol 66:535–545PubMedCrossRefPubMedCentralGoogle Scholar
  47. Mayer MP, Bukau B (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62:670–684PubMedPubMedCentralCrossRefGoogle Scholar
  48. McCollum AK, TenEyck CJ, Sauer BM, Toft DO, Erlichman C (2006) Up-regulation of heat shock protein 27 induces resistance to 17-allylamino-demethoxygeldanamycin through a glutathione-mediated mechanism. Cancer Res 66:10967–10975PubMedCrossRefPubMedCentralGoogle Scholar
  49. McCollum AK, TenEyck CJ, Stensgard B et al (2008) P-glycoprotein-mediated resistance to Hsp90-directed therapy is eclipsed by the heat shock response. Cancer Res 68:7419–7427PubMedPubMedCentralCrossRefGoogle Scholar
  50. Meyer P, Prodromou C, Hu B et al (2003) Structural and functional analysis of the middle segment of hsp90: implications for ATP hydrolysis and client protein and cochaperone interactions. Mol Cell 11:647–658PubMedCrossRefPubMedCentralGoogle Scholar
  51. Miyata Y, Nakamoto H, Neckers L (2013) The therapeutic target Hsp90 and cancer hallmarks. Curr Pharm Des 19:347–365PubMedCrossRefPubMedCentralGoogle Scholar
  52. Moulick K, Ahn JH, Zong H et al (2011) Affinity-based proteomics reveal cancer-specific networks coordinated by Hsp90. Nat Chem Biol 7:818–826PubMedPubMedCentralCrossRefGoogle Scholar
  53. Murphy ME (2013) The HSP70 family and cancer. Carcinogenesis 34:1181–1188PubMedPubMedCentralCrossRefGoogle Scholar
  54. Nagai N, Nakai A, Nagata K (1995) Quercetin suppresses heat shock response by down regulation of HSF1. Biochem Biophys Res Commun 208:1099–1105PubMedCrossRefPubMedCentralGoogle Scholar
  55. Nemoto T, Ohara-Nemoto Y, Ota M, Takagi T, Yokoyama K (1995) Mechanism of dimer formation of the 90-kDa heat-shock protein. Eur J Biochem 233:1–8PubMedCrossRefPubMedCentralGoogle Scholar
  56. Nimmanapalli R, Gerbino E, Dalton WS, Gandhi V, Alsina M (2008) HSP70 inhibition reverses cell adhesion mediated and acquired drug resistance in multiple myeloma. Br J Haematol 142:551–561PubMedPubMedCentralCrossRefGoogle Scholar
  57. Okawa Y, Hideshima T, Steed P et al (2009) SNX-2112, a selective Hsp90 inhibitor, potently inhibits tumor cell growth, angiogenesis, and osteoclastogenesis in multiple myeloma and other hematologic tumors by abrogating signaling via Akt and ERK. Blood 113:846–855PubMedPubMedCentralCrossRefGoogle Scholar
  58. Palumbo A, Anderson K (2011) Multiple myeloma. N Engl J Med 364:1046–1060PubMedCrossRefPubMedCentralGoogle Scholar
  59. Patwardhan CA, Fauq A, Peterson LB, Miller C, Blagg BSJ, Chadli A (2013) Gedunin inactivates the co-chaperone p23 protein causing cancer cell death by apoptosis. J Biol Chem 288:7313–7325PubMedPubMedCentralCrossRefGoogle Scholar
  60. Piper PW, Millson SH (2011) Mechanisms of resistance to Hsp90 inhibitor drugs: a complex mosaic emerges. Pharmaceuticals (Basel) 4:1400–1422CrossRefGoogle Scholar
  61. Plescia J, Salz W, Xia F et al (2005) Rational design of shepherdin, a novel anticancer agent. Cancer Cell 7:457–468PubMedCrossRefGoogle Scholar
  62. ProteinAtlas (2018) The human protein atlas (https://www.proteinatlas.org/)
  63. Rajkumar SV, Kumar S (2016) Multiple myeloma: diagnosis and treatment. Mayo Clin Proc 91:101–119PubMedPubMedCentralCrossRefGoogle Scholar
  64. Ramanathan RK, Egorin MJ, Eiseman JL et al (2007) Phase I and pharmacodynamic study of 17-(allylamino)-17-demethoxygeldanamycin in adult patients with refractory advanced cancers. Clin Cancer Res 13:1769–1774PubMedCrossRefGoogle Scholar
  65. Ratzke C, Mickler M, Hellenkamp B, Buchner J, Hugel T (2010) Dynamics of heat shock protein 90 C-terminal dimerization is an important part of its conformational cycle. Proc Natl Acad Sci U S A 107:16101–16106PubMedPubMedCentralCrossRefGoogle Scholar
  66. Reddy N, Voorhees PM, Houk BE, Brega N, Hinson JM, Jillela A (2013) Phase I trial of the HSP90 inhibitor PF-04929113 (SNX5422) in adult patients with recurrent, refractory hematologic malignancies. Cl Lymph Myelom Leuk 13:385–391CrossRefGoogle Scholar
  67. Reikvam H, Nepstad I, Sulen A, Gjertsen BT, Hatfield KJ, Bruserud O (2013) Increased antileukemic effects in human acute myeloid leukemia by combining HSP70 and HSP90 inhibitors. Expert Opin Investig Drugs 22:551–563PubMedCrossRefGoogle Scholar
  68. Rerole AL, Jego G, Garrido C (2011) Hsp70: anti-apoptotic and tumorigenic protein. Methods Mol Biol 787:205–230PubMedCrossRefGoogle Scholar
  69. Richardson PG, Badros AZ, Jagannath S et al (2010) Tanespimycin with bortezomib: activity in relapsed/refractory patients with multiple myeloma. Br J Haematol 150:428–437PubMedPubMedCentralGoogle Scholar
  70. Richardson PG, Chanan-Khan AA, Lonial S et al (2011a) Tanespimycin and bortezomib combination treatment in patients with relapsed or relapsed and refractory multiple myeloma: results of a phase 1/2 study. Brit J Haematol 153:729–740CrossRefGoogle Scholar
  71. Richardson PG, Mitsiades CS, Laubach JP, Lonial S, Chanan-Khan AA, Anderson KC (2011b) Inhibition of heat shock protein 90 (HSP90) as a therapeutic strategy for the treatment of myeloma and other cancers. Brit J Haematol 152:367–379CrossRefGoogle Scholar
  72. Richardson PG, Mitsiades CS, Laubach JP, Lonial S, Chanan-Khan AA, Anderson KC (2011c) Inhibition of heat shock protein 90 (HSP90) as a therapeutic strategy for the treatment of myeloma and other cancers. Br J Haematol 152:367–379PubMedCrossRefGoogle Scholar
  73. Saibil H (2013) Chaperone machines for protein folding, unfolding and disaggregation. Nat Rev Mol Cell Biol 14:630–642PubMedPubMedCentralCrossRefGoogle Scholar
  74. Saluja A, Dudeja V (2008) Heat shock proteins in pancreatic diseases. J Gastroenterol Hepatol 23(Suppl 1):S42–S45PubMedCrossRefGoogle Scholar
  75. Seggewiss-Bernhardt R, Bargou RC, Goh YT et al (2015) Phase 1/1B trial of the heat shock protein 90 inhibitor NVP-AUY922 as monotherapy or in combination with bortezomib in patients with relapsed or refractory multiple myeloma. Cancer 121:2185–2192PubMedCrossRefGoogle Scholar
  76. Sidera K, Patsavoudi E (2014) HSP90 inhibitors: current development and potential in cancer therapy. Recent Pat Anticancer Drug Discov 9:1–20PubMedPubMedCentralCrossRefGoogle Scholar
  77. Siegel D, Jagannath S, Vesole DH et al (2011) A phase 1 study of IPI-504 (retaspimycin hydrochloride) in patients with relapsed or relapsed and refractory multiple myeloma. Leuk Lymphoma 52:2308–2315PubMedCrossRefGoogle Scholar
  78. Solit DB, Ivy SP, Kopil C et al (2007) Phase I trial of 17-allylamino-17-demethoxygeldanamycin in patients with advanced cancer. Clin Cancer Res 13:1775–1782PubMedPubMedCentralCrossRefGoogle Scholar
  79. Sreeramulu S, Gande SL, Gobel M, Schwalbe H (2009) Molecular mechanism of inhibition of the human protein complex Hsp90-Cdc37, a kinome chaperone-cochaperone, by triterpene celastrol. Angew Chem Int Ed 48:5853–5855CrossRefGoogle Scholar
  80. Stiegler SC, Rubbelke M, Korotkov VS et al (2017) A chemical compound inhibiting the Aha1-Hsp90 chaperone complex. J Biol Chem 292:17073–17083PubMedPubMedCentralCrossRefGoogle Scholar
  81. Stuhmer T, Zollinger A, Siegmund D et al (2008) Signalling profile and antitumour activity of the novel Hsp90 inhibitor NVP-AUY922 in multiple myeloma. Leukemia 22:1604–1612PubMedCrossRefGoogle Scholar
  82. Teng Y, Ngoka L, Mei Y, Lesoon L, Cowell JK (2012) HSP90 and HSP70 proteins are essential for stabilization and activation of WASF3 metastasis-promoting protein. J Biol Chem 287:10051–10059PubMedPubMedCentralCrossRefGoogle Scholar
  83. Usmani SZ, Chiosis G (2011) HSP90 inhibitors as therapy for multiple myeloma. Clin Lymphoma Myeloma Leuk 11(Suppl 1):S77–S81PubMedCrossRefPubMedCentralGoogle Scholar
  84. Voll EA, Ogden IM, Pavese JM et al (2014) Heat shock protein 27 regulates human prostate cancer cell motility and metastatic progression. Oncotarget 5:2648–2663PubMedPubMedCentralCrossRefGoogle Scholar
  85. Wayne N, Mishra P, Bolon DN (2011) Hsp90 and client protein maturation. Methods Mol Biol 787:33–44PubMedPubMedCentralCrossRefGoogle Scholar
  86. Wei L, Liu TT, Wang HH et al (2011) Hsp27 participates in the maintenance of breast cancer stem cells through regulation of epithelial-mesenchymal transition and nuclear factor-kappaB. Breast Cancer Res 13:R101PubMedPubMedCentralCrossRefGoogle Scholar
  87. Wheatley SP, McNeish IA (2005) Survivin: a protein with dual roles in mitosis and apoptosis. Int Rev Cytol 247:35–88PubMedCrossRefPubMedCentralGoogle Scholar
  88. Whitley D, Goldberg SP, Jordan WD (1999) Heat shock proteins: a review of the molecular chaperones. J Vasc Surg 29:748–751PubMedCrossRefGoogle Scholar
  89. Wong DS, Jay DG (2016) Emerging roles of extracellular Hsp90 in cancer. Adv Cancer Res 129:141–163PubMedCrossRefGoogle Scholar
  90. Wu J, Liu T, Rios Z, Mei Q, Lin X, Cao S (2017) Heat shock proteins and cancer. Trends Pharmacol Sci 38:226–256PubMedCrossRefGoogle Scholar
  91. Yang X, Wang J, Zhou Y, Wang Y, Wang S, Zhang W (2012) Hsp70 promotes chemoresistance by blocking Bax mitochondrial translocation in ovarian cancer cells. Cancer Lett 321:137–143PubMedCrossRefGoogle Scholar
  92. Yenari MA (2002) Heat shock proteins and neuroprotection. Adv Exp Med Biol 513:281–299PubMedCrossRefGoogle Scholar
  93. Yokota S, Kitahara M, Nagata K (2000) Benzylidene lactam compound, KNK437, a novel inhibitor of acquisition of thermotolerance and heat shock protein induction in human colon carcinoma cells. Cancer Res 60:2942–2948PubMedGoogle Scholar
  94. Yu Z, Zhi J, Peng X, Zhong X, Xu A (2010) Clinical significance of HSP27 expression in colorectal cancer. Mol Med Rep 3:953–958PubMedGoogle Scholar
  95. Zagouri F, Bournakis E, Koutsoukos K, Papadimitriou CA (2012) Heat shock protein 90 (hsp90) expression and breast cancer. Pharmaceuticals (Basel) 5:1008–1020CrossRefGoogle Scholar
  96. Zhang L, Fok JH, Davies FE (2014) Heat shock proteins in multiple myeloma. Oncotarget 5:1132–1148PubMedPubMedCentralGoogle Scholar
  97. Zhang Y, Tao X, Jin G et al (2016) A targetable molecular chaperone Hsp27 confers aggressiveness in hepatocellular carcinoma. Theranostics 6:558–570PubMedPubMedCentralCrossRefGoogle Scholar
  98. Zuehlke A, Johnson JL (2010) Hsp90 and co-chaperones twist the functions of diverse client proteins. Biopolymers 93:211–217PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Vijay P. Kale
    • 1
  • Sangita Phadtare
    • 2
  • Shantu G. Amin
    • 3
  • Manoj K. Pandey
    • 2
    Email author
  1. 1.Clinical and Nonclinical ResearchBattelle Memorial InstituteWest JeffersonUSA
  2. 2.Department of Biomedical SciencesCooper Medical School of Rowan UniversityCamdenUSA
  3. 3.Department of PharmacologyPenn State College of MedicineHersheyUSA

Personalised recommendations