Advertisement

Cytosolic Heat Shock Protein 90 in Plant Hormone and Environmental Stress Response

  • Kenji YamadaEmail author
  • Etsuko Watanabe
Chapter
Part of the Heat Shock Proteins book series (HESP, volume 17)

Abstract

From recent findings, it was revealed that cytosolic heat shock protein (HSP) 90 plays important roles in plant signal transduction during hormone sensing and environmental stress response. The various types of signaling proteins are identified as substrate for cytosolic HSP90 in plants; auxin receptor complex, auxin transporters, jasmonate receptor complex, brassinosteroid receptor complex, brassinosteroid-related transcription factors, heat shock transcription factors, receptors for pathogen infection, and components for circadian system. From the overview of these HSP90 substrates, cytosolic HSP90 works essentially in terms of sensing by receptor and output by transcription. It is also obvious that HSP90 facilitates SCF-type ubiquitin ligase complexes (e.g., auxin and jasmonate receptors) together with co-chaperone SGT1 in plants. This implies that cytosolic HSP90 regulates various SCF-type ubiquitin ligase complexes in other plant signaling systems. This chapter reviews recent advances in our understandings of cytosolic HSP90 function in plant hormones and environmental stress signaling.

Keywords

Auxin Environmental stress Heat shock HSP90 Plant hormone Receptor 

Abbreviations

AFB

auxin signaling F-box

ARF

auxin response factor

BAK1

BRI1-associated receptor kinase 1

BES1

bin1-EMS-suppressor 1

BR

brassinosteroid

BRI1

brassinosteroid insensitive 1

BZR1

brassinazole resistant 1

CHIP

carboxyl terminus of Hsc70-interacting protein

COI1

coronatine insensitive 1

EBF

EIN3 binding F-box protein

FAN

FKBP-associated NAC

FKBP

FK506-binding protein

GA

gibberellic acid

GID

gibberellin insensitive dwarf

HSF

heat shock transcription factor

HSP

heat shock protein

IAA

indole-3-acetic acid

JA

jasmonic acid

LOV

light oxygen voltage

NLR

nucleotide binding leucine-rich repeat receptor

PAS1

pasticcino 1

PGP

P-glycoprotein

PP2A

protein phosphatase 2A

PPIase

peptidyl-prolyl cis/trans isomerases

SCF

Skp, Cullin, F-box-containing

SNC1

suppressor of npr1 constitutive 1

TIR1

transport inhibitor response 1

TWD

twisted dwarf

ZTL

zeitlupe

Notes

Acknowledgements

This work was supported in part by the National Science Center (UMO-2016/23/B/NZ1/01847), institutional support from Małopolska Centre of Biotechnology, Jagiellonian University.

References

  1. Axtell MJ, Staskawicz BJ (2003) Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4. Cell 112:369–377CrossRefGoogle Scholar
  2. Bouchard R, Bailly A, Blakeslee JJ, Oehring SC, Vincenzetti V, Lee OR, Paponov I, Palme K, Mancuso S, Murphy AS, Schulz B, Geisler M (2006) Immunophilin-like TWISTED DWARF1 modulates auxin efflux activities of Arabidopsis P-glycoproteins. J Biol Chem 281:30603–30612CrossRefGoogle Scholar
  3. Cao D, Froehlich JE, Zhang H, Cheng CL (2003) The chlorate-resistant and photomorphogenesis-defective mutant cr88 encodes a chloroplast-targeted HSP90. Plant J 33:107–118CrossRefGoogle Scholar
  4. Cha J-Y, Kim J, Kim T-S, Zeng Q, Wang L, Lee SY, Kim W-Y, Somers DE (2017) GIGANTEA is a co-chaperone which facilitates maturation of ZEITLUPE in the Arabidopsis circadian clock. Nat Commun 8:3CrossRefGoogle Scholar
  5. Chaiwanon J, Garcia VJ, Cartwright H, Sun Y, Wang Z-Y (2016) Immunophilin-like FKBP42/TWISTED DWARF1 interacts with the receptor kinase BRI1 to regulate brassinosteroid signaling in Arabidopsis. Mol Plant 9:593–600CrossRefGoogle Scholar
  6. Clouse SD (2011) Brassinosteroid signal transduction: from receptor kinase activation to transcriptional networks regulating plant development. Plant Cell 23:1219–1230CrossRefGoogle Scholar
  7. Dodd AN, Salathia N, Hall A, Kévei E, Tóth R, Nagy F, Hibberd JM, Millar AJ, Webb AAR (2005) Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 309:630–633CrossRefGoogle Scholar
  8. Dutta R, Inouye M (2000) GHKL, an emergent ATPase/kinase superfamily. Trends Biochem Sci 25:24–28CrossRefGoogle Scholar
  9. Faure J-D, Vittorioso P, Santoni V, Fraisier V, Prinsen E, Barlier I, Van Onckelen H, Caboche M, Bellini C (1998) The PASTICCINO genes of Arabidopsis thaliana are involved in the control of cell division and differentiation. Development 125:909–918PubMedGoogle Scholar
  10. Franklin KA, Lee SH, Patel D, Kumar SV, Spartz AK, Gu C, Ye S, Yu P, Breen G, Cohen JD, Wigge PA, Gray WM (2011) PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) regulates auxin biosynthesis at high temperature. Proc Natl Acad Sci U S A 108:20231–20235CrossRefGoogle Scholar
  11. Gagne JM, Downes BP, Shiu SH, Durski AM, Vierstra RD (2002) The F-box subunit of the SCF E3 complex is encoded by a diverse superfamily of genes in Arabidopsis. Proc Natl Acad Sci U S A 99:11519–11524CrossRefGoogle Scholar
  12. Gagne JM, Smalle J, Gingerich DJ, Walker JM, Yoo SD, Yanagisawa S, Vierstra RD (2004) Arabidopsis EIN3-binding F-box 1 and 2 form ubiquitin-protein ligases that repress ethylene action and promote growth by directing EIN3 degradation. Proc Natl Acad Sci U S A 101:6803–6808CrossRefGoogle Scholar
  13. Geisler M, Kolukisaoglu HU, Bouchard R, Billion K, Berger J, Saal B, Frangne N, Koncz-Kalman Z, Koncz C, Dudler R, Blakeslee JJ, Murphy AS, Martinoia E, Schulz B (2003) TWISTED DWARF1, a unique plasma membrane-anchored immunophilin-like protein, interacts with Arabidopsis multidrug resistance-like transporters AtPGP1 and AtPGP19. Mol Biol Cell 14:4238–4249CrossRefGoogle Scholar
  14. Gil K-E, Kim W-Y, Lee H-J, Faisal M, Saquib Q, Alatar AA, Park C-M (2017) ZEITLUPE contributes to a thermoresponsive protein quality control system in Arabidopsis. Plant Cell 29:2882–2894CrossRefGoogle Scholar
  15. Gray WM, Östin A, Sandberg G, Romano CP, Estelle M (1998) High temperature promotes auxin-mediated hypocotyl elongation in Arabidopsis. Proc Natl Acad Sci U S A 95:7197–7202CrossRefGoogle Scholar
  16. Guo H, Ecker JR (2003) Plant responses to ethylene gas are mediated by SCF(EBF1/EBF2)-dependent proteolysis of EIN3 transcription factor. Cell 115:667–677CrossRefGoogle Scholar
  17. Hahn A, Bublak D, Schleiff E, Scharf KD (2011) Crosstalk between Hsp90 and Hsp70 chaperones and heat stress transcription factors in tomato. Plant Cell 23:741–755CrossRefGoogle Scholar
  18. Harrar Y, Bellec Y, Bellini C, Faure J-D (2003) Hormonal control of cell proliferation requires PASTICCINO genes. Plant Physiol 132:1217–1227CrossRefGoogle Scholar
  19. Huang S, Monaghan J, Zhong X, Lin L, Sun T, Dong OX, Li X (2014) HSP90s are required for NLR immune receptor accumulation in Arabidopsis. Plant J 79:427–439CrossRefGoogle Scholar
  20. Hubert DA, Tornero P, Belkhadir Y, Krishna P, Takahashi A, Shirasu K, Dangl JL (2003) Cytosolic HSP90 associates with and modulates the Arabidopsis RPM1 disease resistance protein. EMBO J 22:5679–5689CrossRefGoogle Scholar
  21. Hubert DA, He Y, McNulty BC, Tornero P, Dangl JL (2009) Specific Arabidopsis HSP90.2 alleles recapitulate RAR1 cochaperone function in plant NB-LRR disease resistance protein regulation. Proc Natl Acad Sci U S A 106:9556–9563CrossRefGoogle Scholar
  22. Ishiguro S, Watanabe Y, Ito N, Nonaka H, Takeda N, Sakai T, Kanaya H, Okada K (2002) SHEPHERD is the Arabidopsis GRP94 responsible for the formation of functional CLAVATA proteins. EMBO J 21:898–908CrossRefGoogle Scholar
  23. Itoh H, Matsuoka M, Steber CM (2003) A role for the ubiquitin-26S-proteasome pathway in gibberellin signaling. Trends Plant Sci 8:492–497CrossRefGoogle Scholar
  24. Kamphausen T, Fanghänel J, Neumann D, Schulz B, Rahfeld JU (2002) Characterization of Arabidopsis thaliana AtFKBP42 that is membrane-bound and interacts with Hsp90. Plant J 32:263–276CrossRefGoogle Scholar
  25. Kim W-Y, Fujiwara S, Suh S-S, Kim J, Kim Y, Han L, David K, Putterill J, Nam HG, Somers DE (2007) ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light. Nature 449:356–360CrossRefGoogle Scholar
  26. Kim T, Kim WY, Fujiwara S, Kim J, Cha J-Y, Park JH, Lee SY, Somers DE (2011) HSP90 functions in the circadian clock through stabilization of the client F-box protein ZEITLUPE. Proc Natl Acad Sci U S A 108:16843–16848CrossRefGoogle Scholar
  27. Lachowiec J, Lemus T, Thomas JH, Murphy PJM, Nemhauser JL, Queitsch C (2013) The protein chaperone HSP90 can facilitate the divergence of gene duplicates. Genetics 193:1269–1277CrossRefGoogle Scholar
  28. Lechner E, Achard P, Vansiri A, Potuschak T, Genschik P (2006) F-box proteins everywhere. Curr Opin Plant Biol 9:631–638CrossRefGoogle Scholar
  29. Liu Y, Burch-Smith T, Schiff M, Feng S, Dinesh-Kumar SP (2004) Molecular chaperone Hsp90 associates with resistance protein N and its signaling proteins SGT1 and Rar1 to modulate an innate immune response in plants. J Biol Chem 279:2101–2108CrossRefGoogle Scholar
  30. Lu R, Malcuit I, Moffett P, Ruiz MT, Peart J, Wu A-J, Rathjen JP, Bendahmane A, Day L, Baulcombe DC (2003) High throughput virus-induced gene silencing implicates heat shock protein 90 in plant disease resistance. EMBO J 22:5690–5699CrossRefGoogle Scholar
  31. Luo J, Shen G, Yan J, He C, Zhang H (2006) AtCHIP functions as an E3 ubiquitin ligase of protein phosphatase 2A subunits and alters plant response to abscisic acid treatment. Plant J 46:649–657CrossRefGoogle Scholar
  32. McLellan CA, Turbyville TJ, Wijeratne EMK, Kerschen A, Vierling E, Queitsch C, Whitesell L, Gunatilaka AAL (2007) A rhizosphere fungus enhances Arabidopsis thermotolerance through production of an HSP90 inhibitor. Plant Physiol 145:174–182CrossRefGoogle Scholar
  33. Millson SH, Truman AW, King V, Prodromou C, Pearl LH, Piper PW (2005) A two-hybrid screen of the yeast proteome for Hsp90 interactors uncovers a novel Hsp90 chaperone requirement in the activity of a stress-activated mitogen-activated protein kinase, Slt2p (Mpk1p). Eukaryot Cell 4:849–860CrossRefGoogle Scholar
  34. Ni Z, Kim ED, Ha M, Lackey E, Liu J, Zhang Y, Sun Q, Chen ZJ (2009) Altered circadian rhythms regulate growth vigour in hybrids and allopolyploids. Nature 457:327–331CrossRefGoogle Scholar
  35. Nishizawa-Yokoi A, Tainaka H, Yoshida E, Tamoi M, Yabuta Y, Shigeoka S (2010) The 26S proteasome function and Hsp90 activity involved in the regulation of HsfA2 expression in response to oxidative stress. Plant Cell Physiol 51:486–496CrossRefGoogle Scholar
  36. Nover L, Scharf KD, Gagliardi D, Vergne P, Czarnecka-Verner E, Gurley WB (1996) The Hsf world: classification and properties of plant heat stress transcription factors. Cell Stress Chaperones 1:215–223CrossRefGoogle Scholar
  37. Nover L, Bharti K, Döring P, Mishra SK, Ganguli A, Scharf KD (2001) Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need? Cell Stress Chaperones 6:177–189CrossRefGoogle Scholar
  38. Picard D (2002) Heat-shock protein 90, a chaperone for folding and regulation. Cell Mol Life Sci 59:1640–1648CrossRefGoogle Scholar
  39. Potuschak T, Lechner E, Parmentier Y, Yanagisawa S, Grava S, Koncz C, Genschik P (2003) EIN3-dependent regulation of plant ethylene hormone signaling by two Arabidopsis F box proteins: EBF1 and EBF2. Cell 115:679–689CrossRefGoogle Scholar
  40. Queitsch C, Sangster TA, Lindquist S (2002) Hsp90 as a capacitor of phenotypic variation. Nature 417:618–624CrossRefGoogle Scholar
  41. Röhl A, Rohrberg J, Buchner J (2013) The chaperone Hsp90: changing partners for demanding clients. Trends Biochem Sci 38:253–262CrossRefGoogle Scholar
  42. Ryu H, Kim K, Cho H, Park J, Choe S, Hwang I (2007) Nucleocytoplasmic shuttling of BZR1 mediated by phosphorylation is essential in Arabidopsis brassinosteroid signaling. Plant Cell 19:2749–2762CrossRefGoogle Scholar
  43. Salehin M, Bagchi R, Estelle M (2015) SCFTIR1/AFB-based auxin perception: mechanism and role in plant growth and development. Plant Cell 27:9–19CrossRefGoogle Scholar
  44. Sangster TA, Bahrami A, Wilczek A, Watanabe E, Schellenberg K, McLellan C, Kelley A, Kong SW, Queitsch C, Lindquist S (2007) Phenotypic diversity and altered environmental plasticity in Arabidopsis thaliana with reduced Hsp90 levels. PLoS One 2:e648CrossRefGoogle Scholar
  45. Sangster TA, Salathia N, Lee HN, Watanabe E, Schellenberg K, Morneau K, Wang H, Undurraga S, Queitsch C, Lindquist S (2008a) HSP90-buffered genetic variation is common in Arabidopsis thaliana. Proc Natl Acad Sci U S A 105:2969–2974CrossRefGoogle Scholar
  46. Sangster TA, Salathia N, Undurraga S, Milo R, Schellenberg K, Lindquist S, Queitsch C (2008b) HSP90 affects the expression of genetic variation and developmental stability in quantitative traits. Proc Natl Acad Sci U S A 105:2963–2968CrossRefGoogle Scholar
  47. Shigeta T, Zaizen Y, Asami T, Yoshida S, Nakamura Y, Okamoto S, Matsuo T, Sugimoto Y (2014) Molecular evidence of the involvement of heat shock protein 90 in brassinosteroid signaling in Arabidopsis T87 cultured cells. Plant Cell Rep 33:499–510CrossRefGoogle Scholar
  48. Shigeta T, Zaizen Y, Sugimoto Y, Nakamura Y, Matsuo T, Okamoto S (2015) Heat shock protein 90 acts in brassinosteroid signaling through interaction with BES1/BZR1 transcription factor. J Plant Physiol 178:69–73CrossRefGoogle Scholar
  49. Smyczynski C, Roudier F, Gissot L, Vaillant E, Grandjean O, Morin H, Masson T, Bellec Y, Geelen D, Faure J-D (2006) The C terminus of the immunophilin PASTICCINO1 is required for plant development and for interaction with a NAC-like transcription factor. J Biol Chem 281:25475–25484CrossRefGoogle Scholar
  50. Spoel SH, Dong XN (2012) How do plants achieve immunity? Defence without specialized immune cells. Nat Rev Immunol 12:89–100CrossRefGoogle Scholar
  51. Stratmann JW (2003) Long distance run in the wound response – jasmonic acid is pulling ahead. Trends Plant Sci 8:247–250CrossRefGoogle Scholar
  52. Taipale M, Krykbaeva I, Koeva M, Kayatekin C, Westover KD, Karras GI, Lindquist S (2012) Quantitative analysis of HSP90-client interactions reveals principles of substrate recognition. Cell 150:987–1001CrossRefGoogle Scholar
  53. Takahashi A, Casais C, Ichimura K, Shirasu K (2003) HSP90 interacts with RAR1 and SGT1 and is essential for RPS2-mediated disease resistance in Arabidopsis. Proc Natl Acad Sci U S A 100:11777–11782CrossRefGoogle Scholar
  54. Takase T, Nishiyama Y, Tanihigashi H, Ogura Y, Miyazaki Y, Yamada Y, Kiyosue T (2011) LOV KELCH PROTEIN2 and ZEITLUPE repress Arabidopsis photoperiodic flowering under non-inductive conditions, dependent on FLAVIN-BINDING KELCH REPEAT F-BOX 1. Plant J 67:608–621CrossRefGoogle Scholar
  55. Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He SY, Howe GA, Browse J (2007) JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling. Nature 448:661–665CrossRefGoogle Scholar
  56. Tsaytler PA, Krijgsveld J, Goerdayal SS, Rüdiger S, Egmond MR (2009) Novel Hsp90 partners discovered using complementary proteomic approaches. Cell Stress Chaperones 14:629–638CrossRefGoogle Scholar
  57. Vittorioso P, Cowling R, Faure J-D, Caboche M, Bellini C (1998) Mutation in the Arabidopsis PASTICCINO1 gene, which encodes a new FK506-binding protein-like protein, has a dramatic effect on plant development. Mol Cell Biol 18:3034–3043CrossRefGoogle Scholar
  58. Wang R, Zhang Y, Kieffer M, Yu H, Kepinski S, Estelle M (2016) HSP90 regulates temperature-dependent seedling growth in Arabidopsis by stabilizing the auxin co-receptor F-box protein TIR1. Nat Commun 7:10269CrossRefGoogle Scholar
  59. Watanabe E, Mano S, Nomoto M, Tada Y, Hara-Nishimura I, Nishimura M, Yamada K (2016) HSP90 stabilizes auxin-responsive phenotypes by masking a mutation in the auxin receptor TIR1. Plant Cell Physiol 57:2245–2254CrossRefGoogle Scholar
  60. Xie DX, Feys BF, James S, Nieto-Rostro M, Turner JG (1998) COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280:1091–1094CrossRefGoogle Scholar
  61. Yamada K, Fukao Y, Hayashi M, Fukazawa M, Suzuki I, Nishimura M (2007) Cytosolic HSP90 regulates the heat shock response that is responsible for heat acclimation in Arabidopsis thaliana. J Biol Chem 282:37794–37804CrossRefGoogle Scholar
  62. Yan J, Wang J, Li Q, Hwang JR, Patterson C, Zhang H (2003) AtCHIP, a U-box-containing E3 ubiquitin ligase, plays a critical role in temperature stress tolerance in Arabidopsis. Plant Physiol 132:861–869CrossRefGoogle Scholar
  63. Yoshida T, Ohama N, Nakajima J, Kidokoro S, Mizoi J, Nakashima K, Maruyama K, Kim JM, Seki M, Todaka D, Osakabe Y, Sakuma Y, Schöffl F, Shinozaki K, Yamaguchi-Shinozaki K (2011) Arabidopsis HsfA1 transcription factors function as the main positive regulators in heat shock-responsive gene expression. Mol Gen Genomics 286:321–332CrossRefGoogle Scholar
  64. Young JC, Moarefi I, Hartl FU (2001) Hsp90: a specialized but essential protein-folding tool. J Cell Biol 154:267–273CrossRefGoogle Scholar
  65. Zhang M, Botër M, Li K, Kadota Y, Panaretou B, Prodromou C, Shirasu K, Pearl LH (2008) Structural and functional coupling of Hsp90- and Sgt1-centred multi-protein complexes. EMBO J 27:2789–2798CrossRefGoogle Scholar
  66. Zhang X-C, Millet YA, Cheng Z, Bush J, Ausubel FM (2015) Jasmonate signalling in Arabidopsis involves SGT1b–HSP70–HSP90 chaperone complexes. Nat Plants 1:15049CrossRefGoogle Scholar
  67. Zhao R, Davey M, Hsu YC, Kaplanek P, Tong A, Parsons AB, Krogan N, Cagney G, Mai D, Greenblatt J, Boone C, Emili A, Houry WA (2005) Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the Hsp90 chaperone. Cell 120:715–727CrossRefGoogle Scholar
  68. Zou J, Guo Y, Guettouche T, Smith DF, Voellmy R (1998) Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 94:471–480CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Małopolska Centre of BiotechnologyJagiellonian UniversityKrakówPoland
  2. 2.Department of Pathophysiology and MetabolismKawasaki Medical SchoolKurashikiJapan

Personalised recommendations