Advertisement

Giant Cell Arteritis

  • Francisco David CarmonaEmail author
  • Javier Martín
  • Miguel A. González-Gay
Chapter
Part of the Rare Diseases of the Immune System book series (RDIS)

Abstract

Giant cell arteritis (GCA) is an immune-mediated large-vessel vasculitis with a complex etiology in which a cross talk between environmental and genetic factors may affect its susceptibility and phenotypic expression. During the last decades, a large number of candidate gene studies explored the genetic component of GCA. However, most genetic associations were inconsistent due to reduced sample sizes and lack of replication in independent populations. More recently, the establishment of international consortia and the use of the novel omic technologies have given a boost to the current knowledge of the pathological mechanisms behind GCA. In this chapter, we will give an updated overview of the recent insights into the genetic basis of GCA.

Keywords

Vasculitis HLA class II Plasminogen P4HA2 PTPN22 IL17A Th17 Epigenetics 

References

  1. 1.
    Jennette JC, Falk RJ, Bacon PA, Basu N, Cid MC, Ferrario F, et al. 2012 revised International Chapel Hill Consensus Conference Nomenclature of Vasculitides. Arthritis Rheum. 2013;65(1):1–11.  https://doi.org/10.1002/art.37715. PubMed PMID: 23045170.CrossRefPubMedGoogle Scholar
  2. 2.
    Salvarani C, Cantini F, Boiardi L, Hunder GG. Polymyalgia rheumatica and giant-cell arteritis. N Engl J Med. 2002;347(4):261–71.  https://doi.org/10.1056/NEJMra011913. PubMed PMID: 12140303.CrossRefPubMedGoogle Scholar
  3. 3.
    Carmona FD, Gonzalez-Gay MA, Martin J. Genetic component of giant cell arteritis. Rheumatology (Oxford). 2014;53(1):6–18.  https://doi.org/10.1093/rheumatology/ket231. Epub 2013/07/12. PubMed PMID: 23843109.CrossRefGoogle Scholar
  4. 4.
    Borchers AT, Gershwin ME. Giant cell arteritis: a review of classification, pathophysiology, geoepidemiology and treatment. Autoimmun Rev. 2012;11(6–7):A544–54.  https://doi.org/10.1016/j.autrev.2012.01.003. PubMed PMID: 22285588.CrossRefPubMedGoogle Scholar
  5. 5.
    Gonzalez-Gay MA, Vazquez-Rodriguez TR, Lopez-Diaz MJ, Miranda-Filloy JA, Gonzalez-Juanatey C, Martin J, et al. Epidemiology of giant cell arteritis and polymyalgia rheumatica. Arthritis Rheum. 2009;61(10):1454–61.  https://doi.org/10.1002/art.24459. PubMed PMID: 19790127.CrossRefPubMedGoogle Scholar
  6. 6.
    Gonzalez-Gay MA, Martinez-Dubois C, Agudo M, Pompei O, Blanco R, Llorca J. Giant cell arteritis: epidemiology, diagnosis, and management. Curr Rheumatol Rep. 2010;12(6):436–42.  https://doi.org/10.1007/s11926-010-0135-9. PubMed PMID: 20857242.CrossRefPubMedGoogle Scholar
  7. 7.
    Gonzalez-Gay MA, Matteson EL, Castaneda S. Polymyalgia rheumatica. Lancet. 2017;390(10103):1700–12.  https://doi.org/10.1016/S0140-6736(17)31825-1. PubMed PMID: 28774422.CrossRefPubMedGoogle Scholar
  8. 8.
    Gonzalez-Gay MA, Garcia-Porrua C, Miranda-Filloy JA. Giant cell arteritis: diagnosis and therapeutic management. Curr Rheumatol Rep. 2006;8(4):299–302. PubMed PMID: 16839509.CrossRefGoogle Scholar
  9. 9.
    Gonzalez-Gay MA, Miranda-Filloy JA, Lopez-Diaz MJ, Perez-Alvarez R, Gonzalez-Juanatey C, Sanchez-Andrade A, et al. Giant cell arteritis in northwestern Spain: a 25-year epidemiologic study. Medicine. 2007;86(2):61–8.  https://doi.org/10.1097/md.0b013e31803d1764. PubMed PMID: 17435586.CrossRefPubMedGoogle Scholar
  10. 10.
    Carmona FD, Martin J, Gonzalez-Gay MA. New insights into the pathogenesis of giant cell arteritis and hopes for the clinic. Expert Rev Clin Immunol. 2016;12(1):57–66.  https://doi.org/10.1586/1744666X.2016.1089173. PubMed PMID: 26367100.CrossRefPubMedGoogle Scholar
  11. 11.
    Samson M, Corbera-Bellalta M, Audia S, Planas-Rigol E, Martin L, Cid MC, et al. Recent advances in our understanding of giant cell arteritis pathogenesis. Autoimmun Rev. 2017;16(8):833–44.  https://doi.org/10.1016/j.autrev.2017.05.014. PubMed PMID: 28564617.CrossRefPubMedGoogle Scholar
  12. 12.
    Duhaut P, Bosshard S, Ducroix JP. Is giant cell arteritis an infectious disease? Biological and epidemiological evidence. Presse Med. 2004;33(19 Pt 2):1403–8. PubMed PMID: 15615251.CrossRefGoogle Scholar
  13. 13.
    Salvarani C, Cantini F, Hunder GG. Polymyalgia rheumatica and giant-cell arteritis. Lancet. 2008;372(9634):234–45.  https://doi.org/10.1016/S0140-6736(08)61077-6. PubMed PMID: 18640460.CrossRefPubMedGoogle Scholar
  14. 14.
    Salvarani C, Gabriel SE, O’Fallon WM, Hunder GG. The incidence of giant cell arteritis in Olmsted County, Minnesota: apparent fluctuations in a cyclic pattern. Ann Intern Med. 1995;123(3):192–4. PubMed PMID: 7598301.CrossRefGoogle Scholar
  15. 15.
    Petursdottir V, Johansson H, Nordborg E, Nordborg C. The epidemiology of biopsy-positive giant cell arteritis: special reference to cyclic fluctuations. Rheumatology (Oxford). 1999;38(12):1208–12. PubMed PMID: 10587547.CrossRefGoogle Scholar
  16. 16.
    Bhatt AS, Manzo VE, Pedamallu CS, Duke F, Cai D, Bienfang DC, et al. In search of a candidate pathogen for giant cell arteritis: sequencing-based characterization of the giant cell arteritis microbiome. Arthritis Rheumatol. 2014;66(7):1939–44.  https://doi.org/10.1002/art.38631. PubMed PMID: 24644069; PubMed Central PMCID: PMC4113339.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Krupa WM, Dewan M, Jeon MS, Kurtin PJ, Younge BR, Goronzy JJ, et al. Trapping of misdirected dendritic cells in the granulomatous lesions of giant cell arteritis. Am J Pathol. 2002;161(5):1815–23.  https://doi.org/10.1016/S0002-9440(10)64458-6. PubMed PMID: 12414528; PubMed Central PMCID: PMC1850804.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Ma-Krupa W, Jeon MS, Spoerl S, Tedder TF, Goronzy JJ, Weyand CM. Activation of arterial wall dendritic cells and breakdown of self-tolerance in giant cell arteritis. J Exp Med. 2004;199(2):173–83.  https://doi.org/10.1084/jem.20030850. PubMed PMID: 14734523; PubMed Central PMCID: PMC2211768.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Weyand CM, Goronzy JJ. Immune mechanisms in medium and large-vessel vasculitis. Nat Rev Rheumatol. 2013;9(12):731–40.  https://doi.org/10.1038/nrrheum.2013.161. PubMed PMID: 24189842; PubMed Central PMCID: PMC4277683.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Horton R, Wilming L, Rand V, Lovering RC, Bruford EA, Khodiyar VK, et al. Gene map of the extended human MHC. Nat Rev Genet. 2004;5(12):889–99.  https://doi.org/10.1038/nrg1489. PubMed PMID: 15573121.CrossRefGoogle Scholar
  21. 21.
    Carmona FD, Mackie SL, Martin JE, Taylor JC, Vaglio A, Eyre S, et al. A large-scale genetic analysis reveals a strong contribution of the HLA class II region to giant cell arteritis susceptibility. Am J Hum Genet. 2015;96(4):565–80.  https://doi.org/10.1016/j.ajhg.2015.02.009. PubMed PMID: 25817017; PubMed Central PMCID: PMC4385191.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Armstrong RD, Behn A, Myles A, Panayi GS, Welsh KI. Histocompatibility antigens in polymyalgia rheumatica and giant cell arteritis. J Rheumatol. 1983;10(4):659–61. PubMed PMID: 6413689.PubMedGoogle Scholar
  23. 23.
    Bignon JD, Barrier J, Soulillou JP, Martin P, Grolleau JY. HLA DR4 and giant cell arteritis. Tissue Antigens. 1984;24(1):60–2. PubMed PMID: 6333090.CrossRefGoogle Scholar
  24. 24.
    Cid MC, Ercilla G, Vilaseca J, Sanmarti R, Villalta J, Ingelmo M, et al. Polymyalgia rheumatica: a syndrome associated with HLA-DR4 antigen. Arthritis Rheum. 1988;31(5):678–82. PubMed PMID: 3259885.CrossRefGoogle Scholar
  25. 25.
    Combe B, Sany J, Le Quellec A, Clot J, Eliaou JF. Distribution of HLA-DRB1 alleles of patients with polymyalgia rheumatica and giant cell arteritis in a Mediterranean population. J Rheumatol. 1998;25(1):94–8. PubMed PMID: 9458210.PubMedGoogle Scholar
  26. 26.
    Dababneh A, Gonzalez-Gay MA, Garcia-Porrua C, Hajeer A, Thomson W, Ollier W. Giant cell arteritis and polymyalgia rheumatica can be differentiated by distinct patterns of HLA class II association. J Rheumatol. 1998;25(11):2140–5. PubMed PMID: 9818656.PubMedGoogle Scholar
  27. 27.
    Hansen JA, Healey LA, Wilske KR. Association between giant cell (temporal) arteritis and HLA-Cw3. Hum Immunol. 1985;13(3):193–8. PubMed PMID: 4008284.CrossRefGoogle Scholar
  28. 28.
    Jacobsen S, Baslund B, Madsen HO, Tvede N, Svejgaard A, Garred P. Mannose-binding lectin variant alleles and HLA-DR4 alleles are associated with giant cell arteritis. J Rheumatol. 2002;29(10):2148–53. PubMed PMID: 12375325.PubMedGoogle Scholar
  29. 29.
    Lowenstein MB, Bridgeford PH, Vasey FB, Germain BF, Espinoza LR. Increased frequency of HLA-DR3 and DR4 in polymyalgia rheumatica-giant cell arteritis. Arthritis Rheum. 1983;26(7):925–7. PubMed PMID: 6603224.CrossRefGoogle Scholar
  30. 30.
    Martinez-Taboda VM, Bartolome MJ, Lopez-Hoyos M, Blanco R, Mata C, Calvo J, et al. HLA-DRB1 allele distribution in polymyalgia rheumatica and giant cell arteritis: influence on clinical subgroups and prognosis. Semin Arthritis Rheum. 2004;34(1):454–64. PubMed PMID: 15305244.CrossRefGoogle Scholar
  31. 31.
    Rauzy O, Fort M, Nourhashemi F, Alric L, Juchet H, Ecoiffier M, et al. Relation between HLA DRB1 alleles and corticosteroid resistance in giant cell arteritis. Ann Rheum Dis. 1998;57(6):380–2. PubMed PMID: 9771216; PubMed Central PMCID: PMC1752615.CrossRefGoogle Scholar
  32. 32.
    Richardson JE, Gladman DD, Fam A, Keystone EC. HLA-DR4 in giant cell arteritis: association with polymyalgia rheumatica syndrome. Arthritis Rheum. 1987;30(11):1293–7. PubMed PMID: 3500727.CrossRefGoogle Scholar
  33. 33.
    Weyand CM, Hicok KC, Hunder GG, Goronzy JJ. The HLA-DRB1 locus as a genetic component in giant cell arteritis. Mapping of a disease-linked sequence motif to the antigen binding site of the HLA-DR molecule. J Clin Invest. 1992;90(6):2355–61.  https://doi.org/10.1172/JCI116125. PubMed PMID: 1469092; PubMed Central PMCID: PMC443390.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Gonzalez-Gay MA, Garcia-Porrua C, Llorca J, Hajeer AH, Branas F, Dababneh A, et al. Visual manifestations of giant cell arteritis. Trends and clinical spectrum in 161 patients. Medicine. 2000;79(5):283–92. PubMed PMID: 11039076.CrossRefGoogle Scholar
  35. 35.
    Gonzalez-Gay MA, Garcia-Porrua C, Hajeer AH, Dababneh A, Ollier WE. HLA-DRB1*04 may be a marker of severity in giant cell arteritis. Ann Rheum Dis. 2000;59(7):574–5. PubMed PMID: 10950753; PubMed Central PMCID: PMC1753189.CrossRefGoogle Scholar
  36. 36.
    Weyand CM, Hunder NN, Hicok KC, Hunder GG, Goronzy JJ. HLA-DRB1 alleles in polymyalgia rheumatica, giant cell arteritis, and rheumatoid arthritis. Arthritis Rheum. 1994;37(4):514–20. PubMed PMID: 8147928.CrossRefGoogle Scholar
  37. 37.
    Kemp A, Marner K, Nissen SH, Heyn J, Kissmeyer-Nielsen F. HLA antigens in cases of giant cell arteritis. Acta Ophthalmol. 1980;58(6):1000–4. PubMed PMID: 6174016.CrossRefGoogle Scholar
  38. 38.
    Gonzalez-Gay MA, Rueda B, Vilchez JR, Lopez-Nevot MA, Robledo G, Ruiz MP, et al. Contribution of MHC class I region to genetic susceptibility for giant cell arteritis. Rheumatology (Oxford). 2007;46(3):431–4.  https://doi.org/10.1093/rheumatology/kel324. PubMed PMID: 17003171.CrossRefGoogle Scholar
  39. 39.
    Marquez A, Hernandez-Rodriguez J, Cid MC, Solans R, Castaneda S, Fernandez-Contreras ME, et al. Influence of the IL17A locus in giant cell arteritis susceptibility. Ann Rheum Dis. 2014;73(9):1742–5.  https://doi.org/10.1136/annrheumdis-2014-205261. PubMed PMID: 24919468.CrossRefPubMedGoogle Scholar
  40. 40.
    Marquez A, Solans R, Hernandez-Rodriguez J, Cid MC, Castaneda S, Ramentol M, et al. A candidate gene approach identifies an IL33 genetic variant as a novel genetic risk factor for GCA. PLoS One. 2014;9(11):e113476.  https://doi.org/10.1371/journal.pone.0113476. PubMed PMID: 25409453; PubMed Central PMCID: PMC4237421.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Serrano A, Carmona FD, Castaneda S, Solans R, Hernandez-Rodriguez J, Cid MC, et al. Evidence of association of the NLRP1 gene with giant cell arteritis. Ann Rheum Dis. 2013;72(4):628–30.  https://doi.org/10.1136/annrheumdis-2012-202609. PubMed PMID: 23253924.CrossRefPubMedGoogle Scholar
  42. 42.
    Serrano A, Marquez A, Mackie SL, Carmona FD, Solans R, Miranda-Filloy JA, et al. Identification of the PTPN22 functional variant R620W as susceptibility genetic factor for giant cell arteritis. Ann Rheum Dis. 2013;72(11):1882–6.  https://doi.org/10.1136/annrheumdis-2013-203641. PubMed PMID: 23946333; PubMed Central PMCID: PMC4053592.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Rueda B, Roibas B, Martin J, Gonzalez-Gay MA. Influence of interleukin 10 promoter polymorphisms in susceptibility to giant cell arteritis in Northwestern Spain. J Rheumatol. 2007;34(7):1535–9. PubMed PMID: 17552041.PubMedGoogle Scholar
  44. 44.
    Boiardi L, Casali B, Farnetti E, Pipitone N, Nicoli D, Macchioni P, et al. Interleukin-10 promoter polymorphisms in giant cell arteritis. Arthritis Rheum. 2006;54(12):4011–7.  https://doi.org/10.1002/art.22218. PubMed PMID: 17133531.CrossRefPubMedGoogle Scholar
  45. 45.
    Gonzalez-Gay MA, Hajeer AH, Dababneh A, Garcia-Porrua C, Mattey DL, Amoli MM, et al. IL-6 promoter polymorphism at position -174 modulates the phenotypic expression of polymyalgia rheumatica in biopsy-proven giant cell arteritis. Clin Exp Rheumatol. 2002;20(2):179–84. PubMed PMID: 12051396.PubMedGoogle Scholar
  46. 46.
    Enjuanes A, Benavente Y, Hernandez-Rodriguez J, Queralt C, Yague J, Jares P, et al. Association of NOS2 and potential effect of VEGF, IL6, CCL2 and IL1RN polymorphisms and haplotypes on susceptibility to GCA—a simultaneous study of 130 potentially functional SNPs in 14 candidate genes. Rheumatology (Oxford). 2012;51(5):841–51.  https://doi.org/10.1093/rheumatology/ker429. PubMed PMID: 22258388.CrossRefGoogle Scholar
  47. 47.
    Gonzalez-Gay MA, Hajeer AH, Dababneh A, Garcia-Porrua C, Amoli MM, Llorca J, et al. Interferon-gamma gene microsatellite polymorphisms in patients with biopsy-proven giant cell arteritis and isolated polymyalgia rheumatica. Clin Exp Rheumatol. 2004;22(6 Suppl 36):S18–20. PubMed PMID: 15675129.PubMedGoogle Scholar
  48. 48.
    Rodriguez-Rodriguez L, Carmona FD, Castaneda S, Miranda-Filloy JA, Morado IC, Narvaez J, et al. Role of rs1343151 IL23R and rs3790567 IL12RB2 polymorphisms in biopsy-proven giant cell arteritis. J Rheumatol. 2011;38(5):889–92.  https://doi.org/10.3899/jrheum.101046. PubMed PMID: 21285166.CrossRefPubMedGoogle Scholar
  49. 49.
    Morgan AW, Robinson JI, Barrett JH, Martin J, Walker A, Babbage SJ, et al. Association of FCGR2A and FCGR2A-FCGR3A haplotypes with susceptibility to giant cell arteritis. Arthritis Res Ther. 2006;8(4):R109.  https://doi.org/10.1186/ar1996. PubMed PMID: 16846526; PubMed Central PMCID: PMC1779375.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Palomino-Morales R, Torres O, Vazquez-Rodriguez TR, Morado IC, Castaneda S, Callejas-Rubio JL, et al. Association between toll-like receptor 4 gene polymorphism and biopsy-proven giant cell arteritis. J Rheumatol. 2009;36(7):1501–6.  https://doi.org/10.3899/jrheum.081286. PubMed PMID: 19531762.CrossRefPubMedGoogle Scholar
  51. 51.
    Salvarani C, Casali B, Boiardi L, Ranzi A, Macchioni P, Nicoli D, et al. Intercellular adhesion molecule 1 gene polymorphisms in polymyalgia rheumatica/giant cell arteritis: association with disease risk and severity. J Rheumatol. 2000;27(5):1215–21. PubMed PMID: 10813290.PubMedGoogle Scholar
  52. 52.
    Boiardi L, Casali B, Nicoli D, Farnetti E, Chen Q, Macchioni P, et al. Vascular endothelial growth factor gene polymorphisms in giant cell arteritis. J Rheumatol. 2003;30(10):2160–4. PubMed PMID: 14528511.PubMedGoogle Scholar
  53. 53.
    Rueda B, Lopez-Nevot MA, Lopez-Diaz MJ, Garcia-Porrua C, Martin J, Gonzalez-Gay MA. A functional variant of vascular endothelial growth factor is associated with severe ischemic complications in giant cell arteritis. J Rheumatol. 2005;32(9):1737–41. PubMed PMID: 16142870.PubMedGoogle Scholar
  54. 54.
    Gonzalez-Gay MA, Oliver J, Sanchez E, Garcia-Porrua C, Paco L, Lopez-Nevot MA, et al. Association of a functional inducible nitric oxide synthase promoter variant with susceptibility to biopsy-proven giant cell arteritis. J Rheumatol. 2005;32(11):2178–82. PubMed PMID: 16265698.PubMedGoogle Scholar
  55. 55.
    Carmona FD, Martin J, Gonzalez-Gay MA. Genetics of vasculitis. Curr Opin Rheumatol. 2015;27(1):10–7.  https://doi.org/10.1097/BOR.0000000000000124. PubMed PMID: 25405820.CrossRefPubMedGoogle Scholar
  56. 56.
    Lester S, Hewitt AW, Ruediger CD, Bradbury L, De Smit E, Wiese MD, et al. PTPN22 R620W minor allele is a genetic risk factor for giant cell arteritis. RMD Open. 2016;2(1):e000246.  https://doi.org/10.1136/rmdopen-2016-000246. PubMed PMID: 27110387; PubMed Central PMCID: PMC4838769.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Stanford SM, Bottini N. PTPN22: the archetypal non-HLA autoimmunity gene. Nat Rev Rheumatol. 2014;10(10):602–11.  https://doi.org/10.1038/nrrheum.2014.109. PubMed PMID: 25003765; PubMed Central PMCID: PMC4375551.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Bottini N, Peterson EJ. Tyrosine phosphatase PTPN22: multifunctional regulator of immune signaling, development, and disease. Annu Rev Immunol. 2014;32:83–119.  https://doi.org/10.1146/annurev-immunol-032713-120249. PubMed PMID: 24364806.CrossRefPubMedGoogle Scholar
  59. 59.
    Du J, Qiao Y, Sun L, Wang X. Lymphoid-specific tyrosine phosphatase (Lyp): a potential drug target for treatment of autoimmune diseases. Curr Drug Targets. 2014;15(3):335–46. PubMed PMID: 24188455.CrossRefGoogle Scholar
  60. 60.
    Espigol-Frigole G, Corbera-Bellalta M, Planas-Rigol E, Lozano E, Segarra M, Garcia-Martinez A, et al. Increased IL-17A expression in temporal artery lesions is a predictor of sustained response to glucocorticoid treatment in patients with giant-cell arteritis. Ann Rheum Dis. 2013;72(9):1481–7.  https://doi.org/10.1136/annrheumdis-2012-201836. PubMed PMID: 22993227.CrossRefPubMedGoogle Scholar
  61. 61.
    Deng J, Younge BR, Olshen RA, Goronzy JJ, Weyand CM. Th17 and Th1 T-cell responses in giant cell arteritis. Circulation. 2010;121(7):906–15.  https://doi.org/10.1161/CIRCULATIONAHA.109.872903. PubMed PMID: 20142449; PubMed Central PMCID: PMC2837465.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Hernandez-Rodriguez J, Segarra M, Vilardell C, Sanchez M, Garcia-Martinez A, Esteban MJ, et al. Tissue production of pro-inflammatory cytokines (IL-1beta, TNFalpha and IL-6) correlates with the intensity of the systemic inflammatory response and with corticosteroid requirements in giant-cell arteritis. Rheumatology (Oxford). 2004;43(3):294–301.  https://doi.org/10.1093/rheumatology/keh058. PubMed PMID: 14679293.CrossRefGoogle Scholar
  63. 63.
    Cortes A, Brown MA. Promise and pitfalls of the Immunochip. Arthritis Res Ther. 2011;13(1):101.  https://doi.org/10.1186/ar3204. PubMed PMID: 21345260; PubMed Central PMCID: PMC3157635.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Parkes M, Cortes A, van Heel DA, Brown MA. Genetic insights into common pathways and complex relationships among immune-mediated diseases. Nat Rev Genet. 2013;14(9):661–73.  https://doi.org/10.1038/nrg3502. PubMed PMID: 23917628.CrossRefPubMedGoogle Scholar
  65. 65.
    Saruhan-Direskeneli G, Hughes T, Aksu K, Keser G, Coit P, Aydin SZ, et al. Identification of multiple genetic susceptibility loci in Takayasu arteritis. Am J Hum Genet. 2013;93(2):298–305.  https://doi.org/10.1016/j.ajhg.2013.05.026. PubMed PMID: 23830517; PubMed Central PMCID: PMC3738826.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Ortiz-Fernandez L, Carmona FD, Lopez-Mejias R, Gonzalez-Escribano MF, Lyons PA, Morgan AW, et al. Cross-phenotype analysis of Immunochip data identifies KDM4C as a relevant locus for the development of systemic vasculitis. Ann Rheum Dis. 2018;77(4):589–95.  https://doi.org/10.1136/annrheumdis-2017-212372. PubMed PMID: 29374629; PubMed Central PMCID: PMC5849568.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Ortiz-Fernandez L, Carmona FD, Montes-Cano MA, Garcia-Lozano JR, Conde-Jaldon M, Ortego-Centeno N, et al. Genetic analysis with the Immunochip platform in Behcet disease. Identification of residues associated in the HLA class I region and new susceptibility loci. PLoS One. 2016;11(8):e0161305.  https://doi.org/10.1371/journal.pone.0161305. PubMed PMID: 27548383; PubMed Central PMCID: PMC4993481.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    de Bakker PI, Raychaudhuri S. Interrogating the major histocompatibility complex with high-throughput genomics. Hum Mol Genet. 2012;21(R1):R29–36.  https://doi.org/10.1093/hmg/dds384. PubMed PMID: 22976473; PubMed Central PMCID: PMC3459647.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Jia X, Han B, Onengut-Gumuscu S, Chen WM, Concannon PJ, Rich SS, et al. Imputing amino acid polymorphisms in human leukocyte antigens. PLoS One. 2013;8(6):e64683.  https://doi.org/10.1371/journal.pone.0064683. PubMed PMID: 23762245; PubMed Central PMCID: PMC3675122.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Brown JH, Jardetzky TS, Gorga JC, Stern LJ, Urban RG, Strominger JL, et al. Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature. 1993;364(6432):33–9.  https://doi.org/10.1038/364033a0. PubMed PMID: 8316295.CrossRefPubMedGoogle Scholar
  71. 71.
    Tollefsen S, Hotta K, Chen X, Simonsen B, Swaminathan K, Mathews II, et al. Structural and functional studies of trans-encoded HLA-DQ2.3 (DQA1*03:01/DQB1*02:01) protein molecule. J Biol Chem. 2012;287(17):13611–9.  https://doi.org/10.1074/jbc.M111.320374. PubMed PMID: 22362761; PubMed Central PMCID: PMC3340161.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Badrinath S, Huyton T, Schumacher H, Blasczyk R, Bade-Doeding C. Position 45 influences the peptide binding motif of HLA-B*44:08. Immunogenetics. 2012;64(3):245–9.  https://doi.org/10.1007/s00251-011-0583-z. PubMed PMID: 22009320.CrossRefPubMedGoogle Scholar
  73. 73.
    Wang R, Kozhaya L, Mercer F, Khaitan A, Fujii H, Unutmaz D. Expression of GARP selectively identifies activated human FOXP3+ regulatory T cells. Proc Natl Acad Sci U S A. 2009;106(32):13439–44.  https://doi.org/10.1073/pnas.0901965106. PubMed PMID: 19666573; PubMed Central PMCID: PMC2726405.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Samson M, Audia S, Fraszczak J, Trad M, Ornetti P, Lakomy D, et al. Th1 and Th17 lymphocytes expressing CD161 are implicated in giant cell arteritis and polymyalgia rheumatica pathogenesis. Arthritis Rheum. 2012;64(11):3788–98.  https://doi.org/10.1002/art.34647. PubMed PMID: 22833233.CrossRefPubMedGoogle Scholar
  75. 75.
    Carmona FD, Vaglio A, Mackie SL, Hernandez-Rodriguez J, Monach PA, Castaneda S, et al. A genome-wide association study identifies risk alleles in plasminogen and P4HA2 associated with giant cell arteritis. Am J Hum Genet. 2017;100(1):64–74.  https://doi.org/10.1016/j.ajhg.2016.11.013. PubMed PMID: 28041642; PubMed Central PMCID: PMC5223025.CrossRefPubMedGoogle Scholar
  76. 76.
    Law RH, Abu-Ssaydeh D, Whisstock JC. New insights into the structure and function of the plasminogen/plasmin system. Curr Opin Struct Biol. 2013;23(6):836–41.  https://doi.org/10.1016/j.sbi.2013.10.006. PubMed PMID: 24252474.CrossRefPubMedGoogle Scholar
  77. 77.
    Moser TL, Stack MS, Asplin I, Enghild JJ, Hojrup P, Everitt L, et al. Angiostatin binds ATP synthase on the surface of human endothelial cells. Proc Natl Acad Sci U S A. 1999;96(6):2811–6. PubMed PMID: 10077593; PubMed Central PMCID: PMC15851.CrossRefGoogle Scholar
  78. 78.
    Miles LA, Parmer RJ. Plasminogen receptors: the first quarter century. Semin Thromb Hemost. 2013;39(4):329–37.  https://doi.org/10.1055/s-0033-1334483. PubMed PMID: 23532575; PubMed Central PMCID: PMC3938387.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Myllyharju J. Prolyl 4-hydroxylases, the key enzymes of collagen biosynthesis. Matrix Biol. 2003;22(1):15–24. PubMed PMID: 12714038.CrossRefGoogle Scholar
  80. 80.
    Dupont C, Armant DR, Brenner CA. Epigenetics: definition, mechanisms and clinical perspective. Semin Reprod Med. 2009;27(5):351–7.  https://doi.org/10.1055/s-0029-1237423. PubMed PMID: 19711245; PubMed Central PMCID: PMC2791696.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Mohan SV, Liao YJ, Kim JW, Goronzy JJ, Weyand CM. Giant cell arteritis: immune and vascular aging as disease risk factors. Arthritis Res Ther. 2011;13(4):231.  https://doi.org/10.1186/ar3358. PubMed PMID: 21861860; PubMed Central PMCID: PMC3239337.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Wing S, Rider LG, Johnson JR, Miller FW, Matteson EL, Crowson CS, et al. Do solar cycles influence giant cell arteritis and rheumatoid arthritis incidence? BMJ Open. 2015;5(5):e006636.  https://doi.org/10.1136/bmjopen-2014-006636. PubMed PMID: 25979866; PubMed Central PMCID: PMC4442155.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Lee JL, Naguwa SM, Cheema GS, Gershwin ME. The geo-epidemiology of temporal (giant cell) arteritis. Clin Rev Allergy Immunol. 2008;35(1–2):88–95.  https://doi.org/10.1007/s12016-008-8075-0. PubMed PMID: 18286386.CrossRefPubMedGoogle Scholar
  84. 84.
    Coit P, De Lott LB, Nan B, Elner VM, Sawalha AH. DNA methylation analysis of the temporal artery microenvironment in giant cell arteritis. Ann Rheum Dis. 2016;75(6):1196–202.  https://doi.org/10.1136/annrheumdis-2014-207116. PubMed PMID: 26038090.CrossRefPubMedGoogle Scholar
  85. 85.
    Djuretic IM, Levanon D, Negreanu V, Groner Y, Rao A, Ansel KM. Transcription factors T-bet and Runx3 cooperate to activate Ifng and silence Il4 in T helper type 1 cells. Nat Immunol. 2007;8(2):145–53.  https://doi.org/10.1038/ni1424. PubMed PMID: 17195845.CrossRefPubMedGoogle Scholar
  86. 86.
    Coit P, Direskeneli H, Sawalha AH. An update on the role of epigenetics in systemic vasculitis. Curr Opin Rheumatol. 2018;30(1):4–15.  https://doi.org/10.1097/BOR.0000000000000451. PubMed PMID: 28957963; PubMed Central PMCID: PMC5805392.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Dozmorov MG, Coit P, Maksimowicz-McKinnon K, Sawalha AH. Age-associated DNA methylation changes in naive CD4(+) T cells suggest an evolving autoimmune epigenotype in aging T cells. Epigenomics. 2017;9(4):429–45.  https://doi.org/10.2217/epi-2016-0143. PubMed PMID: 28322571; PubMed Central PMCID: PMC5549647.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Kermani TA. Takayasu arteritis and giant cell arteritis: are they a spectrum of the same disease? Int J Rheum Dis. 2018;22(Suppl 1):41–8.  https://doi.org/10.1111/1756-185X.13288. PubMed PMID: 29624864.CrossRefPubMedGoogle Scholar
  89. 89.
    Carmona FD, Coit P, Saruhan-Direskeneli G, Hernandez-Rodriguez J, Cid MC, Solans R, et al. Analysis of the common genetic component of large-vessel vasculitides through a meta-Immunochip strategy. Sci Rep. 2017;7:43953.  https://doi.org/10.1038/srep43953. PubMed PMID: 28277489; PubMed Central PMCID: PMC5344032.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Goriely S, Neurath MF, Goldman M. How microorganisms tip the balance between interleukin-12 family members. Nat Rev Immunol. 2008;8(1):81–6.  https://doi.org/10.1038/nri2225. PubMed PMID: 18084185.CrossRefPubMedGoogle Scholar
  91. 91.
    Conway R, O’Neill L, O’Flynn E, Gallagher P, McCarthy GM, Murphy CC, et al. Ustekinumab for the treatment of refractory giant cell arteritis. Ann Rheum Dis. 2016;75(8):1578–9.  https://doi.org/10.1136/annrheumdis-2016-209351. PubMed PMID: 27143653.CrossRefPubMedGoogle Scholar
  92. 92.
    Berry WL, Janknecht R. KDM4/JMJD2 histone demethylases: epigenetic regulators in cancer cells. Cancer Res. 2013;73(10):2936–42.  https://doi.org/10.1158/0008-5472.CAN-12-4300. PubMed PMID: 23644528; PubMed Central PMCID: PMC3655154.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Gonzalez-Gay MA. Giant cell arteritis and polymyalgia rheumatica: two different but often overlapping conditions. Semin Arthritis Rheum. 2004;33(5):289–93. PubMed PMID: 15079759.CrossRefGoogle Scholar
  94. 94.
    Gonzalez-Gay MA, Garcia-Porrua C, Vazquez-Caruncho M. Polymyalgia rheumatica in biopsy proven giant cell arteritis does not constitute a different subset but differs from isolated polymyalgia rheumatica. J Rheumatol. 1998;25(9):1750–5. PubMed PMID: 9733456.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Francisco David Carmona
    • 1
    • 2
    Email author
  • Javier Martín
    • 3
  • Miguel A. González-Gay
    • 4
    • 5
    • 6
  1. 1.Departamento de Genética e Instituto de BiotecnologíaUniversidad de GranadaGranadaSpain
  2. 2.Centro de Investigación Biomédica (CIBM)Universidad de Granada, Parque Tecnológico Ciencias de la SaludGranadaSpain
  3. 3.Instituto de Parasitología y Biomedicina ‘López-Neyra’, IPBLN-CSICGranadaSpain
  4. 4.Epidemiology, Genetics and Atherosclerosis Research Group on Systemic Inflammatory Diseases, Rheumatology Division, IDIVALSantanderSpain
  5. 5.School of MedicineUniversity of CantabriaSantanderSpain
  6. 6.Cardiovascular Pathophysiology and Genomics Research Unit, Faculty of Health SciencesSchool of Physiology, University of the WitwatersrandJohannesburgSouth Africa

Personalised recommendations