Advertisement

Exploring and Exploiting the Role of Food Structure in Digestion

  • Matt GoldingEmail author
Chapter

Abstract

The structural diversity and complexity encountered in food systems is remarkable in its scope. This is true for both wholefood materials, such as fruit and vegetables, but also for manufactured foods constructed through formulation and process design. The material and structural properties of foods are well known to have a predominant effect on sensory properties and perception, that in turn has a determining role on our food preferences. However, the interactions and assembly of the structural elements in food materials, and the manner in which they are broken down during consumption and digestion, is increasingly seen as of importance in consideration of the nutritional value of what we eat. In fact, a noteworthy aspect of our digestive process is its ability to effectively extract nutritional value from the array of foods available for consumption. However, the response of food structures during digestion can, with appropriate understanding, be manipulated allowing for the enhancement of nutritional value. This chapter explores how the digestive properties of the primary macronutrient components of protein, fat and carbohydrates are influenced by their structural assembly in foods.

Keywords

Microstructure Digestion Colloids Lipids Protein Carbohydrate 

References

  1. Adams, S., Singleton, S., Juskaitis, R., & Wilson, T. (2007). In-vivo visualisation of mouth-material interactions by video rate endoscopy. Food Hydrocolloids, 21(5–6), 986–995. https://doi.org/10.1016/j.foodhyd.2006.08.011CrossRefGoogle Scholar
  2. Agustiana, A., Zhou, Y., Flendrig, L., & White, W. S. (2010). The dose-response effects of the amount of oil in salad dressing on the bioavailability of carotenoids and fat-soluble vitamins in salad vegetables. Faseb Journal, 24, 1.CrossRefGoogle Scholar
  3. Akkermans, C., Van Der Goot, A. J., Venema, P., Gruppen, H., Vereijken, J. M., Van Der Linden, E., et al. (2007). Micrometer-sized fibrillar protein aggregates from soy glycinin and soy protein isolate. Journal of Agricultural and Food Chemistry, 55(24), 9877–9882. https://doi.org/10.1021/jf0718897CrossRefPubMedGoogle Scholar
  4. Arancibia, C., Costell, E., & Bayarri, S. (2013). Impact of structural differences on perceived sweetness in semisolid dairy matrices. Journal of Texture Studies, 44(5), 346–356. https://doi.org/10.1111/jtxs.12019CrossRefGoogle Scholar
  5. Arancibia, C., Jublot, L., Costell, E., & Bayarri, S. (2011). Flavor release and sensory characteristics of o/w emulsions. Influence of composition, microstructure and rheological behavior. Food Research International, 44(6), 1632–1641. https://doi.org/10.1016/j.foodres.2011.04.049CrossRefGoogle Scholar
  6. Armand, M., Pasquier, B., Andre, M., Borel, P., Senft, M., Peyrot, J., et al. (1999). Digestion and absorption of 2 fat emulsions with different droplet sizes in the human digestive tract. American Journal of Clinical Nutrition, 70(6), 1096–1106.CrossRefGoogle Scholar
  7. Ashwar, B. A., Gani, A., Shah, A., Wani, I. A., & Masoodi, F. A. (2016). Preparation, health benefits and applications of resistant starch—A review. Starch-Starke, 68(3–4), 287–301. https://doi.org/10.1002/star.201500064CrossRefGoogle Scholar
  8. Barbe, F., Menard, O., Le Gouar, Y., Buffiere, C., Famelart, M. H., Laroche, B., et al. (2014). Acid and rennet gels exhibit strong differences in the kinetics of milk protein digestion and amino acid bioavailability. Food Chemistry, 143, 1–8. https://doi.org/10.1016/j.foodchem.2013.07.100CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bateman, L., Ye, A. Q., & Singh, H. (2010). In vitro digestion of beta-lactoglobulin fibrils formed by heat treatment at low pH. Journal of Agricultural and Food Chemistry, 58(17), 9800–9808. https://doi.org/10.1021/jf101722tCrossRefPubMedGoogle Scholar
  10. Bellesi, F. A., Martinez, M. J., Ruiz-Henestrosa, V. M. P., & Pilosof, A. M. R. (2016). Comparative behavior of protein or polysaccharide stabilized emulsion under in vitro gastrointestinal conditions. Food Hydrocolloids, 52, 47–56. https://doi.org/10.1016/j.foodhyd.2015.06.007CrossRefGoogle Scholar
  11. Bellesi, F. A., Ruiz-Henestrosa, V. M. P., & Pilosof, A. M. R. (2014). Behavior of protein interfacial films upon bile salts addition. Food Hydrocolloids, 36, 115–122. https://doi.org/10.1016/j.foodhyd.2013.09.010CrossRefGoogle Scholar
  12. Bimal, C., & Zhang, G. N. (2006). Olestra: A solution to food fat? Food Reviews International, 22(3), 245–258. https://doi.org/10.1080/87559120600694705CrossRefGoogle Scholar
  13. Blackberg, L., Hernell, O., Bengtsson, G., & Olivecrona, T. (1979). Colipase enhances hydrolysis of dietary triglycerides in the absence of bile-salts. Journal of Clinical Investigation, 64(5), 1303–1308. https://doi.org/10.1172/jci109586CrossRefGoogle Scholar
  14. Borel, P., Caillaud, D., & Cano, N. J. (2015). Vitamin D bioavailability: State of the art. Critical Reviews in Food Science and Nutrition, 55(9), 1193–1205. https://doi.org/10.1080/10408398.2012.688897CrossRefPubMedGoogle Scholar
  15. Bornhorst, G. M., Roman, M. J., Rutherfurd, S. M., Burri, B. J., Moughan, P. J., & Singh, R. P. (2013). Gastric digestion of raw and roasted almonds in vivo. Journal of Food Science, 78(11), H1807–H1813. https://doi.org/10.1111/1750-3841.12274CrossRefPubMedGoogle Scholar
  16. Bornhorst, G. M., & Singh, R. P. (2012). Bolus formation and disintegration during digestion of food carbohydrates. Comprehensive Reviews in Food Science and Food Safety, 11(2), 101–118. https://doi.org/10.1111/j.1541-4337.2011.00172.xCrossRefGoogle Scholar
  17. Butterworth, P. J., Warren, F. J., & Ellis, P. R. (2011). Human alpha-amylase and starch digestion: An interesting marriage. Starch-Starke, 63(7), 395–405. https://doi.org/10.1002/star.201000150CrossRefGoogle Scholar
  18. Chen, B. C., McClements, D. J., & Decker, E. A. (2013). Design of foods with bioactive lipids for improved health. In M. P. Doyle & T. R. Klaenhammer (Eds.), Annual review of food science and technology (Vol. 4, pp. 35–56). Palo Alto: Annual Reviews.Google Scholar
  19. Chu, B. S., Rich, G. T., Ridout, M. J., Faulks, R. M., Wickham, M. S. J., & Wilde, P. J. (2009). Modulating pancreatic lipase activity with galactolipids: Effects of emulsion interfacial composition. Langmuir, 25(16), 9352–9360. https://doi.org/10.1021/la9008174CrossRefPubMedGoogle Scholar
  20. Colonna, P., Leloup, V., & Buleon, A. (1992). Limiting factors of starch hydrolysis. European Journal of Clinical Nutrition, 46, S17–S32.PubMedGoogle Scholar
  21. Cummings, J. H., Beatty, E. R., Kingman, S. M., Bingham, S. A., & Englyst, H. N. (1996). Digestion and physiological properties of resistant starch in the human large bowel. British Journal of Nutrition, 75(5), 733–747. https://doi.org/10.1079/bjn19960177CrossRefPubMedGoogle Scholar
  22. de Roos, K. B. (2006). How lipids influence flavor perception. In F. Shahidi & H. Weenen (Eds.), Food lipids: Chemistry, flavor, and texture (Vol. 920, pp. 145–158). Washington, DC: American Chemical Society.CrossRefGoogle Scholar
  23. Dhingra, D., Michael, M., Rajput, H., & Patil, R. T. (2012). Dietary fibre in foods: A review. Journal of Food Science and Technology-Mysore, 49(3), 255–266. https://doi.org/10.1007/s13197-011-0365-5CrossRefGoogle Scholar
  24. Ellis, P. R., Kendall, C. W. C., Ren, Y. L., Parker, C., Pacy, J. F., Waldron, K. W., et al. (2004). Role of cell walls in the bioaccessibility of lipids in almond seeds. American Journal of Clinical Nutrition, 80(3), 604–613.CrossRefGoogle Scholar
  25. Ellrichmann, M., Kapelle, M., Ritter, P. R., Holst, J. J., Herzig, K. H., Schmidt, W. E., et al. (2008). Orlistat inhibition of intestinal lipase acutely increases appetite and attenuates postprandial glucagon-like peptide-1-(7-36)-amide-1, cholecystokinin, and peptide YY concentrations. Journal of Clinical Endocrinology and Metabolism, 93(10), 3995–3998. https://doi.org/10.1210/jc.2008-0924CrossRefPubMedGoogle Scholar
  26. Englyst, K. N., Liu, S., & Englyst, H. N. (2007). Nutritional characterization and measurement of dietary carbohydrates. European Journal of Clinical Nutrition, 61, S19–S39. https://doi.org/10.1038/sj.ejcn.1602937CrossRefPubMedGoogle Scholar
  27. Evenepoel, P., Geypens, B., Luypaerts, A., Hiele, M., Ghoos, Y., & Rutgeerts, P. (1998). Digestibility of cooked and raw egg protein in humans as assessed by stable isotope techniques. Journal of Nutrition, 128(10), 1716–1722.CrossRefGoogle Scholar
  28. Ferrer, E., Alegria, A., Farre, R., Abellan, P., Romero, F., & Clemente, G. (2003). Evolution of available lysine and furosine contents in milk-based infant formulas throughout the shelf-life storage period. Journal of the Science of Food and Agriculture, 83(5), 465–472. https://doi.org/10.1002/jsfa.1402CrossRefGoogle Scholar
  29. Foltz, M., Maijaars, J., Schuring, E. A. H., van der Wal, R. J. P., Boer, T., Duchateau, G. S. M., et al. (2009). Intragastric layering of lipids delays lipid absorption and increases plasma CCK but has minor effects on gastric emptying and appetite. American Journal of Physiology—Gastrointestinal and Liver Physiology, 296(5), G982–G991. https://doi.org/10.1152/ajpgi.90579.2008CrossRefPubMedGoogle Scholar
  30. Foster, K. D., Grigor, J. M. V., Cheong, J. N., Yoo, M. J. Y., Bronlund, J. E., & Morgenstern, M. P. (2011). The role of oral processing in dynamic sensory perception. Journal of Food Science, 76(2), R49–R61. https://doi.org/10.1111/j.1750-3841.2010.02029.xCrossRefPubMedGoogle Scholar
  31. Fundo, J. F., Quintas, M. A. C., & Silva, C. L. M. (2015). Molecular dynamics and structure in physical properties and stability of food systems. Food Engineering Reviews, 7(4), 384–392. https://doi.org/10.1007/s12393-015-9109-zCrossRefGoogle Scholar
  32. Gallant, D. J., Bouchet, B., Buleon, A., & Perez, S. (1992). Physical characteristics of starch granules and susceptibility to enzymatic degradation. European Journal of Clinical Nutrition, 46, S3–S16.PubMedGoogle Scholar
  33. Gallier, S., Rutherfurd, S. M., Moughan, P. J., & Singh, H. (2014). Effect of food matrix microstructure on stomach emptying rate and apparent ileal fatty acid digestibility of almond lipids. Food and Function, 5(10), 2410–2419. https://doi.org/10.1039/c4fo00335gCrossRefPubMedGoogle Scholar
  34. Gallier, S., Shaw, E., Laubscher, A., Gragson, D., Singh, H., & Jimenez-Flores, R. (2014). Adsorption of bile salts to milk phospholipid and phospholipid protein monolayers. Journal of Agricultural and Food Chemistry, 62(6), 1363–1372. https://doi.org/10.1021/jf404448dCrossRefPubMedGoogle Scholar
  35. Gargouri, Y., Julien, R., Bois, A. G., Verger, R., & Sarda, L. (1983). Studies on the detergent inhibition of pancreatic lipase activity. Journal of Lipid Research, 24(10), 1336–1342.PubMedGoogle Scholar
  36. Golding, M., & Wooster, T. J. (2010). The influence of emulsion structure and stability on lipid digestion. Current Opinion in Colloid and Interface Science, 15(1–2), 90–101. https://doi.org/10.1016/j.cocis.2009.11.006CrossRefGoogle Scholar
  37. Golding, M., Wooster, T. J., Day, L., Xu, M., Lundin, L., Keogh, J., et al. (2011). Impact of gastric structuring on the lipolysis of emulsified lipids. Soft Matter, 7(7), 3513–3523. https://doi.org/10.1039/c0sm01227kCrossRefGoogle Scholar
  38. Grundy, M. M. L., Grassby, T., Mandalari, G., Waldron, K. W., Butterworth, P. J., Berry, S. E. E., et al. (2015). Effect of mastication on lipid bioaccessibility of almonds in a randomized human study and its implications for digestion kinetics, metabolizable energy, and postprandial lipemia. American Journal of Clinical Nutrition, 101(1), 25–33. https://doi.org/10.3945/ajcn.114.088328CrossRefPubMedGoogle Scholar
  39. Grundy, M. M. L., Lapsley, K., & Ellis, P. R. (2016). A review of the impact of processing on nutrient bioaccessibility and digestion of almonds. International Journal of Food Science and Technology, 51(9), 1937–1946. https://doi.org/10.1111/ijfs.13192CrossRefPubMedGoogle Scholar
  40. Guerciolini, R. (1997). Mode of action of orlistat. International Journal of Obesity, 21, S12–S23.PubMedGoogle Scholar
  41. Guo, M. R., Fox, P. F., Flynn, A., & Kindstedt, P. S. (1995). Susceptibility of beta-lactoglobulin and sodium caseinate to proteolysis by pepsin and trypsin. Journal of Dairy Science, 78(11), 2336–2344.CrossRefGoogle Scholar
  42. Guyomarc’h, F., Warin, F., Muir, D. D., & Leaver, J. (2000). Lactosylation of milk proteins during the manufacture and storage of skim milk powders. International Dairy Journal, 10(12), 863–872. https://doi.org/10.1016/s0958-6946(01)00020-6CrossRefGoogle Scholar
  43. Harker, F. R., Amos, R. L., Echeverria, G., & Gunson, F. A. (2006). Influence of texture on taste: Insights gained during studies of hardness, juiciness, and sweetness of apple fruit. Journal of Food Science, 71(2), S77–S82.CrossRefGoogle Scholar
  44. Harp, J. B. (1998). An assessment of the efficacy and safety of orlistat for the long-term management of obesity. Journal of Nutritional Biochemistry, 9(9), 516–521. https://doi.org/10.1016/s0955-2863(98)00006-0CrossRefGoogle Scholar
  45. Heck, A. M., Yanovski, J. A., & Calis, K. A. (2000). Orlistat, a new lipase inhibitor for the management of obesity. Pharmacotherapy, 20(3), 270–279. https://doi.org/10.1592/phco.20.4.270.34882CrossRefPubMedPubMedCentralGoogle Scholar
  46. Hoad, C. L., Rayment, P., Spiller, R. C., Marciani, L., Alonso, B. D., Traynor, C., et al. (2004). In vivo imaging of intragastric gelation and its effect on satiety in humans. Journal of Nutrition, 134(9), 2293–2300.CrossRefGoogle Scholar
  47. Hooton, D., Lentle, R., Monro, J., Wickham, M., & Simpson, R. (2015). The secretion and action of brush border enzymes in the mammalian small intestine. In B. Nilius, T. Gudermann, R. Jahn, R. Lill, O. H. Petersen, & P. P. DeTombe (Eds.), Reviews of physiology, biochemistry and pharmacology (Vol. 168, pp. 59–118). Switzerland: Springer.CrossRefGoogle Scholar
  48. Hu, P. S., Zhao, H. J., Duan, Z. Y., Zhang, L. L., & Wu, D. X. (2004). Starch digestibility and the estimated glycemic score of different types of rice differing in amylose contents. Journal of Cereal Science, 40(3), 231–237. https://doi.org/10.1016/j.jcs.2004.06.001CrossRefGoogle Scholar
  49. Hur, S. J., Decker, E. A., & McClements, D. J. (2009). Influence of initial emulsifier type on microstructural changes occurring in emulsified lipids during in vitro digestion. Food Chemistry, 114(1), 253–262. https://doi.org/10.1016/j.foodchem.2008.09.069CrossRefGoogle Scholar
  50. Iametti, S., DeGregori, B., Vecchio, G., & Bonomi, F. (1996). Modifications occur at different structural levels during the heat denaturation of beta-lactoglobulin. European Journal of Biochemistry, 237(1), 106–112. https://doi.org/10.1111/j.1432-1033.1996.0106n.xCrossRefPubMedGoogle Scholar
  51. Jang, S. W., Lee, J. W., Ryu, D. S., Son, M., & Kang, M. J. (2014). Design of pH-responsive alginate raft formulation of risedronate for reduced esophageal irritation. International Journal of Biological Macromolecules, 70, 174–178. https://doi.org/10.1016/j.ijbiomac.2014.06.048CrossRefPubMedGoogle Scholar
  52. Jeanes, Y. M., Hall, W. L., Ellard, S., Lee, E., & Lodge, J. K. (2004). The absorption of vitamin E is influenced by the amount of fat in a meal and the food matrix. British Journal of Nutrition, 92(4), 575–579. https://doi.org/10.1079/bjn20041249CrossRefPubMedGoogle Scholar
  53. Kelly, S. M., Shorthouse, M., Cotterell, J. C., Riordan, A. M., Lee, A. J., Thurnham, D. I., et al. (1998). A 3-month, double-blind, controlled trial of feeding with sucrose polyester in human volunteers. British Journal of Nutrition, 80(1), 41–49. https://doi.org/10.1017/s0007114598001755CrossRefPubMedGoogle Scholar
  54. Keogh, J. B., Wooster, T. J., Golding, M., Day, L., Otto, B., & Clifton, P. M. (2011). Slowly and rapidly digested fat emulsions are equally satiating but their triglycerides are differentially absorbed and metabolized in humans. Journal of Nutrition, 141(5), 809–815. https://doi.org/10.3945/jn.110.131110CrossRefPubMedGoogle Scholar
  55. Kindleysides, S., Beck, K. L., Walsh, D. C. I., Henderson, L., Jayasinghe, S. N., Golding, M., et al. (2017). Fat sensation: Fatty acid taste and olfaction sensitivity and the link with disinhibited eating behaviour. Nutrients, 9(8), 21. https://doi.org/10.3390/nu9080879CrossRefGoogle Scholar
  56. Kitabatake, N., & Kinekawa, Y. I. (1998). Digestibility of bovine milk whey protein and beta-lactoglobulin in vitro and in vivo. Journal of Agricultural and Food Chemistry, 46(12), 4917–4923. https://doi.org/10.1021/jf9710903CrossRefGoogle Scholar
  57. Kohyama, K., Hayakawa, F., Kazami, Y., & Nishinari, K. (2016). Sucrose release from agar gels and sensory perceived sweetness. Food Hydrocolloids, 60, 405–414. https://doi.org/10.1016/j.foodhyd.2016.04.003CrossRefGoogle Scholar
  58. Lasse, M., Ulluwishewa, D., Healy, J., Thompson, D., Miller, A., Roy, N., et al. (2016). Evaluation of protease resistance and toxicity of amyloid-like food fibrils from whey, soy, kidney bean, and egg white. Food Chemistry, 192, 491–498. https://doi.org/10.1016/j.foodchem.2015.07.044CrossRefPubMedGoogle Scholar
  59. Lentle, R. G., & Janssen, P. W. M. (2011). The physical processes of digestion (pp. IX, 279p. 253 illus., 276 illus. in color.). Retrieved from https://doi.org/10.1007/978-1-4419-9449-3CrossRefGoogle Scholar
  60. Li, Y., Hu, M., & McClements, D. J. (2011). Factors affecting lipase digestibility of emulsified lipids using an in vitro digestion model: Proposal for a standardised pH-stat method. Food Chemistry, 126(2), 498–505. https://doi.org/10.1016/j.foodchem.2010.11.027CrossRefGoogle Scholar
  61. Liddle, R. A. (1995). Regulation of cholecystokinin secretion by intraluminal releasing factors. American Journal of Physiology-Gastrointestinal and Liver Physiology, 269(3), G319–G327.CrossRefGoogle Scholar
  62. Loveday, S. M., Peram, M. R., Singh, H., Ye, A., & Jameson, G. B. (2014). Digestive diversity and kinetic intrigue among heated and unheated beta-lactoglobulin species. Food and Function, 5(11), 2783–2791. https://doi.org/10.1039/c4fo00362dCrossRefPubMedGoogle Scholar
  63. Loveday, S. M., Su, J. H., Rao, M. A., Anema, S. G., & Singh, H. (2012). Whey protein nanofibrils: Kinetic, rheological and morphological effects of group IA and IIA cations. International Dairy Journal, 26(2), 133–140. https://doi.org/10.1016/j.idairyj.2012.03.001CrossRefGoogle Scholar
  64. Lovegrove, A., Edwards, C. H., De Noni, I., Patel, H., El, S. N., Grassby, T., et al. (2017). Role of polysaccharides in food, digestion, and health. Critical Reviews in Food Science and Nutrition, 57(2), 237–253. https://doi.org/10.1080/10408398.2014.939263CrossRefPubMedGoogle Scholar
  65. Lowe, M. E. (1997). Structure and function of pancreatic lipase and colipase. Annual Review of Nutrition, 17, 141–158. https://doi.org/10.1146/annurev.nutr.17.1.141CrossRefGoogle Scholar
  66. Lueamsaisuk, C., Lentle, R. G., MacGibbon, A. K. H., Matia-Merino, L., & Golding, M. (2014). Factors influencing the dynamics of emulsion structure during neonatal gastric digestion in an in vitro model. Food Hydrocolloids, 36, 162–172. https://doi.org/10.1016/j.foodhyd.2013.09.013CrossRefGoogle Scholar
  67. Lueamsaisuk, C., Lentle, R. G., MacGibbon, A. K. H., Matia-Merino, L., & Golding, M. (2015). The effect of lactoferrin on physical changes in phospholipid stabilised emulsions during neonatal in vitro gastric digestion: Does synergism of pepsin and lipase promote lipolysis in protein-stabilised emulsions? Food Hydrocolloids, 43, 785–793. https://doi.org/10.1016/j.foodhyd.2014.08.010CrossRefGoogle Scholar
  68. Lundin, L., & Golding, M. (2009). Structure design for healthy food. Australian Journal of Dairy Technology, 64(1), 68–74.Google Scholar
  69. Luo, Q., Boom, R. M., & Janssen, A. E. M. (2015). Digestion of protein and protein gels in simulated gastric environment. Lwt-Food Science and Technology, 63(1), 161–168. https://doi.org/10.1016/j.lwt.2015.03.087CrossRefGoogle Scholar
  70. Luo, Q., Borst, J. W., Westphal, A. H., Boom, R. M., & Janssen, A. E. M. (2017). Pepsin diffusivity in whey protein gels and its effect on gastric digestion. Food Hydrocolloids, 66, 318–325. https://doi.org/10.1016/j.foodhyd.2016.11.046CrossRefGoogle Scholar
  71. Macierzanka, A., Sancho, A. I., Mills, E. N. C., Rigby, N. M., & Mackie, A. R. (2009). Emulsification alters simulated gastrointestinal proteolysis of beta-casein and beta-lactoglobulin. Soft Matter, 5(3), 538–550. https://doi.org/10.1039/b811233aCrossRefGoogle Scholar
  72. Mackie, A. R., Rafiee, H., Malcolm, P., Salt, L., & van Aken, G. (2013). Specific food structures supress appetite through reduced gastric emptying rate. American Journal of Physiology-Gastrointestinal and Liver Physiology, 304(11), G1038–G1043. https://doi.org/10.1152/ajpgi.00060.2013CrossRefPubMedPubMedCentralGoogle Scholar
  73. Madadlou, A., Rakhshi, E., & Abbaspourrad, A. (2016). Engineered emulsions for obesity treatment. Trends in Food Science and Technology, 52, 90–97. https://doi.org/10.1016/j.tifs.2016.04.009CrossRefGoogle Scholar
  74. Maldonado-Valderrama, J., Gunning, A. P., Ridout, M. J., Wilde, P. J., & Morris, V. J. (2009). The effect of physiological conditions on the surface structure of proteins: Setting the scene for human digestion of emulsions. European Physical Journal E, 30(2), 165–174. https://doi.org/10.1140/epje/i2008-10426-0CrossRefGoogle Scholar
  75. Maldonado-Valderrama, J., Gunning, A. P., Wilde, P. J., & Morris, V. J. (2010). In vitro gastric digestion of interfacial protein structures: Visualisation by AFM. Soft Matter, 6(19), 4908–4915. https://doi.org/10.1039/c0sm00300jCrossRefGoogle Scholar
  76. Maldonado-Valderrama, J., Wilde, P., Macierzanka, A., & Mackie, A. (2011). The role of bile salts in digestion. Advances in Colloid and Interface Science, 165(1), 36–46. https://doi.org/10.1016/j.cis.2010.12.002CrossRefGoogle Scholar
  77. Maldonado-Valderrama, J., Woodward, N. C., Gunning, A. P., Ridout, M. J., Husband, F. A., Mackie, A. R., et al. (2008). Interfacial characterization of beta-lactoglobulin networks: Displacement by bile salts. Langmuir, 24(13), 6759–6767. https://doi.org/10.1021/la800551uCrossRefPubMedGoogle Scholar
  78. Mandalari, G., Grundy, M. M. L., Grassby, T., Parker, M. L., Cross, K. L., Chessa, S., et al. (2014). The effects of processing and mastication on almond lipid bioaccessibility using novel methods of in vitro digestion modelling and micro-structural analysis. British Journal of Nutrition, 112(9), 1521–1529. https://doi.org/10.1017/s0007114514002414CrossRefPubMedGoogle Scholar
  79. Mao, L. K., & Miao, S. (2015). Structuring food emulsions to improve nutrient delivery during digestion. Food Engineering Reviews, 7(4), 439–451. https://doi.org/10.1007/s12393-015-9108-0CrossRefGoogle Scholar
  80. Marciani, L., Faulks, R., Wickham, M., Bush, D., Pick, B., Wright, J., et al. (2009). Effect of intragastric acid stability of fat emulsions on gastric emptying, plasma lipid profile and postprandial satiety. British Journal of Nutrition, 101(6), 919–928. https://doi.org/10.1017/S0007114508039986CrossRefPubMedGoogle Scholar
  81. Marciani, L., Wickham, M. S. J., Bush, D., Faulks, R., Wright, J., Fillery-Travis, A., et al. (2006). Magnetic resonance imaging of the behaviour of oil-in-water emulsions in the gastric lumen of man. British Journal of Nutrition, 95(2), 331–339. https://doi.org/10.1079/BJN20051628CrossRefPubMedGoogle Scholar
  82. Marciani, L., Wickham, M., Singh, G., Bush, D., Pick, B., Cox, E., et al. (2006). Delaying gastric emptying and enhancing cholecystokinin release and satiety by using acid stable fat emulsions. Gastroenterology, 130(4), A227–A227.Google Scholar
  83. Marciani, L., Wickham, M., Singh, G., Bush, D., Pick, B., Cox, E., et al. (2007). Enhancement of intragastric acid stability of a fat emulsion meal delays gastric emptying and increases cholecystokinin release and gallbladder contraction. American Journal of Physiology-Gastrointestinal and Liver Physiology, 292(6), G1607–G1613. https://doi.org/10.1152/ajpgi.00452.2006CrossRefPubMedGoogle Scholar
  84. McClements, D. J., Decker, E. A., & Park, Y. (2009). Controlling lipid bioavailability through physicochemical and structural approaches. Critical Reviews in Food Science and Nutrition, 49(1), 48–67. https://doi.org/10.1080/10408390701764245CrossRefPubMedGoogle Scholar
  85. McClements, D. J., & Li, Y. (2010). Structured emulsion-based delivery systems: Controlling the digestion and release of lipophilic food components. Advances in Colloid and Interface Science, 159(2), 213–228. https://doi.org/10.1016/j.cis.2010.06.010CrossRefPubMedGoogle Scholar
  86. Mehta, B. M., & Deeth, H. C. (2016). Blocked lysine in dairy products: Formation, occurrence, analysis, and nutritional implications. Comprehensive Reviews in Food Science and Food Safety, 15(1), 206–218. https://doi.org/10.1111/1541-4337.12178CrossRefGoogle Scholar
  87. Mennah-Govela, Y. A., Bornhorst, G. M., & Singh, R. P. (2015). Acid diffusion into rice boluses is influenced by rice type, variety, and presence of alpha-amylase. Journal of Food Science, 80(2), E316–E325. https://doi.org/10.1111/1750-3841.12750CrossRefPubMedGoogle Scholar
  88. Michalski, M. C., Vors, C., Lecomte, M., & Laugerette, F. (2017). Metabolic and inflammatory impacts of emulsified fat. Ocl-Oilseeds and Fats Crops and Lipids, 24(2), 12. https://doi.org/10.1051/ocl/2017009CrossRefGoogle Scholar
  89. Moayedzadeh, S., Madadlou, A., & Asl, A. K. (2015). Formation mechanisms, handling and digestibility of food protein nanofibrils. Trends in Food Science and Technology, 45(1), 50–59. https://doi.org/10.1016/j.tifs.2015.05.005CrossRefGoogle Scholar
  90. Monogioudi, E., Faccio, G., Lille, M., Poutanen, K., Buchert, J., & Mattinen, M. L. (2011). Effect of enzymatic cross-linking of beta-casein on proteolysis by pepsin. Food Hydrocolloids, 25(1), 71–81. https://doi.org/10.1016/j.foodhyd.2010.05.007CrossRefGoogle Scholar
  91. Mulet-Cabero, A. I., Rigby, N. M., Brodkorb, A., & Mackie, A. R. (2017). Dairy food structures influence the rates of nutrient digestion through different in vitro gastric behaviour. Food Hydrocolloids, 67, 63–73. https://doi.org/10.1016/j.foodhyd.2016.12.039CrossRefGoogle Scholar
  92. Mullally, M. M., Mehra, R., & FitzGerald, R. J. (1998). Thermal effects on the conformation and susceptibility of beta-lactoglobulin to hydrolysis by gastric and pancreatic endoproteinases. Irish Journal of Agricultural and Food Research, 37(1), 51–60.Google Scholar
  93. Mun, S., Decker, E. A., Park, Y., Weiss, J., & McClements, D. J. (2006). Influence of interfacial composition on in vitro digestibility of emulsified lipids: Potential mechanism for chitosan’s ability to inhibit fat digestion. Food Biophysics, 1(1), 21–29. https://doi.org/10.1007/s11483-005-9001-0CrossRefGoogle Scholar
  94. Nakayoshi, Y., Nakamura, S., Kameo, Y., Shiiba, D., Katsuragi, Y., & Ohtsubo, K. (2015). Measurement of resistant starch content in cooked rice and analysis of gelatinization and retrogradation characteristics. Bioscience Biotechnology and Biochemistry, 79(11), 1860–1866. https://doi.org/10.1080/09168451.2015.1044934CrossRefGoogle Scholar
  95. Nik, A. M., Wright, A. J., & Corredig, M. (2010). Surface adsorption alters the susceptibility of whey proteins to pepsin-digestion. Journal of Colloid and Interface Science, 344(2), 372–381. https://doi.org/10.1016/j.jcis.2010.01.006CrossRefPubMedGoogle Scholar
  96. Nik, A. M., Wright, A. J., & Corredig, M. (2011). Impact of interfacial composition on emulsion digestion and rate of lipid hydrolysis using different in vitro digestion models. Colloids and Surfaces B-Biointerfaces, 83(2), 321–330. https://doi.org/10.1016/j.colsurfb.2010.12.001CrossRefGoogle Scholar
  97. Noack, J., Timm, D., Hospattankar, A., & Slavin, J. (2013). Fermentation profiles of wheat dextrin, inulin and partially hydrolyzed guar gum using an in vitro digestion pretreatment and in vitro batch fermentation system model. Nutrients, 5(5), 1500–1510. https://doi.org/10.3390/nu5051500CrossRefPubMedPubMedCentralGoogle Scholar
  98. Norton, J. E., Wallis, G. A., Spyropoulos, F., Lillford, P. J., & Norton, I. T. (2014). Designing food structures for nutrition and health benefits. In M. P. Doyle & T. R. Klaenhammer (Eds.), Annual review of food science and technology (Vol. 5, pp. 177–195). Palo Alto: Annual Reviews.Google Scholar
  99. Novotny, J. A., Gebauer, S. K., & Baer, D. J. (2012). Discrepancy between the Atwater factor predicted and empirically measured energy values of almonds in human diets. American Journal of Clinical Nutrition, 96(2), 296–301. https://doi.org/10.3945/ajcn.112.035782CrossRefPubMedGoogle Scholar
  100. Obrien, J., & Morrissey, P. A. (1989). Nutritional and toxicological aspects of the Maillard browning reaction in foods. Critical Reviews in Food Science and Nutrition, 28(3), 211–248.CrossRefGoogle Scholar
  101. Pafumi, Y., Lairon, D., de la Porte, P. L., Juhel, C., Storch, J., Hamosh, M., et al. (2002a). Mechanisms of inhibition of triacylglycerol by human gastric lipase. Journal of Biological Chemistry, 277(31), 28070–28079. https://doi.org/10.1074/jbc.M202839200CrossRefGoogle Scholar
  102. Pafumi, Y., Lairon, D., de la Porte, P. L., Juhel, C., Storch, J., Hamosh, M., et al. (2002b). Mechanisms of inhibition of triacylglycerol hydrolysis by human gastric lipase. Journal of Biological Chemistry, 277(31), 28070–28079. https://doi.org/10.1074/jbc.M202839200CrossRefGoogle Scholar
  103. Park, G. Y., Mun, S., Park, Y., Rhee, S., Decker, E. A., Weiss, J., et al. (2007). Influence of encapsulation of emulsified lipids with chitosan on their in vivo digestibility. Food Chemistry, 104(2), 761–767. https://doi.org/10.1016/j.foodchem.2006.12.020CrossRefGoogle Scholar
  104. Potty, V. H. (1996). Physio-chemical aspects, physiological functions, nutritional importance and technological significance of dietary fibres—A critical appraisal. Journal of Food Science and Technology-Mysore, 33(1), 1–18.Google Scholar
  105. Ranhotra, G. S., Gelroth, J. A., & Glaser, B. K. (1996). Energy value of resistant starch. Journal of Food Science, 61(2), 453–455. https://doi.org/10.1111/j.1365-2621.1996.tb14215.xCrossRefGoogle Scholar
  106. Rayner, C. K., Samsom, M., Jones, K. L., & Horowitz, M. (2001). Relationships of upper gastrointestinal motor and sensory function with glycemic control. Diabetes Care, 24(2), 371–381. https://doi.org/10.2337/diacare.24.2.371CrossRefPubMedGoogle Scholar
  107. Rodrigues, S. A., Selway, N., Morgenstern, M. P., Motoi, L., Stokes, J. R., & James, B. J. (2017). Lubrication of chocolate during oral processing. Food and Function, 8(2), 533–544. https://doi.org/10.1039/c6fo00950fCrossRefPubMedGoogle Scholar
  108. Romeih, E., & Walker, G. (2017). Recent advances on microbial transglutaminase and dairy application. Trends in Food Science and Technology, 62, 133–140. https://doi.org/10.1016/j.tifs.2017.02.015CrossRefGoogle Scholar
  109. Roos, N., Lorenzen, P. C., Sick, H., Schrezenmeir, J., & Schlimme, E. (2003). Cross-linking by transglutaminase changes neither the in vitro proteolysis nor the in vivo digestibility of caseinate. Kieler Milchwirtschaftliche Forschungsberichte, 55(4), 261–276.Google Scholar
  110. Rui, X., Fu, Y. T., Zhang, Q. Q., Li, W., Zare, F., Chen, X. H., et al. (2016). A comparison study of bioaccessibility of soy protein gel induced by magnesium chloride, glucono-delta-lactone and microbial transglutaminase. Lwt-Food Science and Technology, 71, 234–242. https://doi.org/10.1016/j.lwt.2016.03.032CrossRefGoogle Scholar
  111. Running, C. A., & Mattes, R. D. (2016). A review of the evidence supporting the taste of non-esterified fatty acids in humans. Journal of the American Oil Chemists Society, 93(10), 1325–1336. https://doi.org/10.1007/s11746-016-2885-7CrossRefGoogle Scholar
  112. Sajilata, M. G., Singhal, R. S., & Kulkarni, P. R. (2006). Resistant starch—A review. Comprehensive Reviews in Food Science and Food Safety, 5(1), 1–17. https://doi.org/10.1111/j.1541-4337.2006.tb00076.xCrossRefGoogle Scholar
  113. Sarkar, A., Goh, K. K. T., & Singh, H. (2010a). Properties of oil-in-water emulsions stabilized by beta-lactoglobulin in simulated gastric fluid as influenced by ionic strength and presence of mucin. Food Hydrocolloids, 24(5), 534–541. https://doi.org/10.1016/j.foodhyd.2009.12.005CrossRefGoogle Scholar
  114. Sarkar, A., Horne, D. S., & Singh, H. (2010b). Pancreatin-induced coalescence of oil-in-water emulsions in an in vitro duodenal model. International Dairy Journal, 20(9), 589–597. https://doi.org/10.1016/j.idairyj.2009.12.007CrossRefGoogle Scholar
  115. Schlamowitz, M., & Peterson, L. U. (1959). Studies on the optimum pH for the action of pepsin on native and denatured bovine serum albumin and bovine hemoglobin. Journal of Biological Chemistry, 234(12), 3137–3145.PubMedGoogle Scholar
  116. Schmidt, D. G., & Vanmarkwijk, B. W. (1993). Enzymatic-hydrolysis of whey proteins—Influence of heat-treatment of alpha-lactalbumin and beta-lactoglobulin on their proteolysis by pepsin and papain. Netherlands Milk and Dairy Journal, 47(1), 15–22.Google Scholar
  117. Scholten, E. (2017). Composite foods: From structure to sensory perception. Food and Function, 8(2), 481–497. https://doi.org/10.1039/c6fo01099gCrossRefPubMedGoogle Scholar
  118. Schumacher, D., & Kroh, L. W. (1996). The influence of Maillard reaction products on enzyme reactions. Zeitschrift Fur Ernahrungswissenschaft, 35(3), 213–225.CrossRefGoogle Scholar
  119. Seimon, R. V., Wooster, T., Otto, B., Golding, M., Day, L., Little, T. J., et al. (2009). The droplet size of intraduodenal fat emulsions influences antropyloroduodenal motility, hormone release and appetite in healthy males. American Journal of Clinical Nutrition, 89(6), 1729–1736. https://doi.org/10.3945/ajcn.2009.27518CrossRefPubMedGoogle Scholar
  120. Singh, H., Ye, A. Q., & Horne, D. (2009). Structuring food emulsions in the gastrointestinal tract to modify lipid digestion. Progress in Lipid Research, 48(2), 92–100. https://doi.org/10.1016/j.plipres.2008.12.001CrossRefPubMedGoogle Scholar
  121. Slavin, J. (2013). Fiber and prebiotics: Mechanisms and health benefits. Nutrients, 5(4), 1417–1435. https://doi.org/10.3390/nu5041417CrossRefPubMedPubMedCentralGoogle Scholar
  122. Southgate, D. A. T. (1995). Digestion and metabolism of sugars. American Journal of Clinical Nutrition, 62(1), 203S–211S.CrossRefGoogle Scholar
  123. Stewart, J. E., Feinle-Bisset, C., Golding, M., Delahunty, C., Clifton, P. M., & Keast, R. S. J. (2010). Oral sensitivity to fatty acids, food consumption and BMI in human subjects. British Journal of Nutrition, 104(1), 145–152. https://doi.org/10.1017/s0007114510000267CrossRefPubMedGoogle Scholar
  124. Tang, C. H., Li, L., & Yang, X. Q. (2006). Influence of transglutaminase-induced cross-linking on in vitro digestibility of soy protein isolate. Journal of Food Biochemistry, 30(6), 718–731. https://doi.org/10.1111/j.1745-4514.2006.00092.xCrossRefGoogle Scholar
  125. Thevenot, J., Cauty, C., Legland, D., Dupont, D., & Floury, J. (2017). Pepsin diffusion in dairy gels depends on casein concentration and microstructure. Food Chemistry, 223, 54–61. https://doi.org/10.1016/j.foodchem.2016.12.014CrossRefPubMedGoogle Scholar
  126. Thomsen, C., Rasmussen, O. W., Christiansen, C., Andreasen, F., Poulsen, P. L., & Hermansen, K. (1994). The glycemic index of spaghetti and gastric-emptying in non-insulin-dependent diabetic-patients. European Journal of Clinical Nutrition, 48(11), 776–780.PubMedGoogle Scholar
  127. Tokle, T., Lesmes, U., Decker, E. A., & McClements, D. J. (2012). Impact of dietary fiber coatings on behavior of protein-stabilized lipid droplets under simulated gastrointestinal conditions. Food and Function, 3(1), 58–66. https://doi.org/10.1039/c1fo10129cCrossRefPubMedGoogle Scholar
  128. Townend, R., Herskovits, T. T., & Timasheff, S. N. (1969). State of amino acid residues in beta-lactoglobulin. Archives of Biochemistry and Biophysics, 129(2), 567–580. https://doi.org/10.1016/0003-9861(69)90216-1CrossRefPubMedGoogle Scholar
  129. van Aken, G. A. (2010). Relating food emulsion structure and composition to the way it is processed in the gastrointestinal tract and physiological responses: What are the opportunities? Food Biophysics, 5(4), 258–283. https://doi.org/10.1007/s11483-010-9160-5CrossRefGoogle Scholar
  130. van Aken, G. A., Bomhof, E., Zoet, F. D., Verbeek, M., & Oosterveld, A. (2011). Differences in in vitro gastric behaviour between homogenized milk and emulsions stabilised by Tween 80, whey protein, or whey protein and caseinate. Food Hydrocolloids, 25(4), 781–788. https://doi.org/10.1016/j.foodhyd.2010.09.016CrossRefGoogle Scholar
  131. Veerman, C., Sagis, L. M. C., & van der Linden, E. (2003). Gels at extremely low weight fractions (0.07%) formed by irreversible self-assembly of proteins. Macromolecular Bioscience, 3(5), 243–247. https://doi.org/10.1002/mabi.200390035CrossRefGoogle Scholar
  132. Venema, K., Minekus, A., & Havenaar, R. (2004). Advanced in-vitro models of the gastro-intestinal tract—Novel tools to study functionality of dietary fibres. In J. W. VanderKamp, N. G. Asp, J. M. Jones, & G. Schaafsma (Eds.), Dietary fibre—Bio-active carbohydrates for food and feed (pp. 99–112). Wageningen: Academic Publishers.Google Scholar
  133. Wang, X. M., & Chen, J. S. (2017). Food oral processing: Recent developments and challenges. Current Opinion in Colloid and Interface Science, 28, 22–30. https://doi.org/10.1016/j.cocis.2017.01.001CrossRefGoogle Scholar
  134. Wee, M. S. M., Lentle, R. G., Goh, K. K. T., & Matia-Merino, L. (2017). The first of the viscoceuticals? A shear thickening gum induces gastric satiety in rats. Food and Function, 8(1), 96–102. https://doi.org/10.1039/c6fo01464jCrossRefPubMedGoogle Scholar
  135. Wee, M. S. M., Matia-Merino, L., Carnachan, S. M., Sims, I. M., & Goh, K. K. T. (2014). Structure of a shear-thickening polysaccharide extracted from the New Zealand black tree fern, Cyathea medullaris. International Journal of Biological Macromolecules, 70, 86–91. https://doi.org/10.1016/j.ijbiomac.2014.06.032CrossRefPubMedGoogle Scholar
  136. Wooster, T. J., Day, L., Xu, M., Golding, M., Oiseth, S., Keogh, J., et al. (2014). Impact of different biopolymer networks on the digestion of gastric structured emulsions. Food Hydrocolloids, 36, 102–114. https://doi.org/10.1016/j.foodhyd.2013.09.009CrossRefGoogle Scholar
  137. Ye, A. Q., Cui, J., Dalgleish, D., & Singh, H. (2016a). The formation and breakdown of structured clots from whole milk during gastric digestion. Food and Function, 7(10), 4259–4266. https://doi.org/10.1039/c6fo00228eCrossRefPubMedGoogle Scholar
  138. Ye, A. Q., Cui, J., Dalgleish, D., & Singh, H. (2016b). Formation of a structured clot during the gastric digestion of milk: Impact on the rate of protein hydrolysis. Food Hydrocolloids, 52, 478–486. https://doi.org/10.1016/j.foodhyd.2015.07.023CrossRefGoogle Scholar
  139. Zeece, M., Huppertz, T., & Kelly, A. (2008). Effect of high-pressure treatment on in-vitro digestibility of beta-lactoglobulin. Innovative Food Science and Emerging Technologies, 9(1), 62–69. https://doi.org/10.1016/j.ifset.2007.05.004CrossRefGoogle Scholar
  140. Zhao, X. B., Pan, F., & Lu, J. R. (2008). Recent development of peptide self-assembly. Progress in Natural Science-Materials International, 18(6), 653–660. https://doi.org/10.1016/j.pnsc.2008.01.012CrossRefGoogle Scholar
  141. Zhou, Z. K., Topping, D. L., Morell, M. K., & Bird, A. R. (2010). Changes in starch physical characteristics following digestion of foods in the human small intestine. British Journal of Nutrition, 104(4), 573–581. https://doi.org/10.1017/s0007114510000875CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Massey Institute of Food Science and TechnologyMassey UniversityPalmerston NorthNew Zealand

Personalised recommendations