Advertisement

Challenges in Quantifying Digestion

  • Robert Havenaar
  • Mans MinekusEmail author
Chapter

Abstract

This chapter discusses the challenges in relation to food and nutrient terminology, chemical analysis, human and animal digestion studies as well as those related to in vitro digestion studies with static methods and dynamic gastrointestinal models. Although it looks simple, using uniform terminology and definitions in food and digestion science is the first challenge. The same is true for the analysis methods for determining the concentrations of food compounds in samples from in vivo and in vitro studies. Effort has been taken by different institutes and working groups to standardize these challenges. Then comes the challenge in setting up of studies, be it human clinical studies, animal studies, or in vitro studies. Each type of study has its specific challenges that should be recognized before starting digestion experiments. We discuss these challenges to support the researcher, but we do realize that not all aspects are covered.

Keywords

Food digestion In vivo studies Animal studies In vitro studies In vitro digestion models Food analysis Standardization 

References

  1. Abrahamse, E., Minekus, M., van Aken, G. A., van de Heijning, B., Knol, J., Bartke, N., et al. (2012). Development of the digestive system–Experimental challenges and approaches of infant lipid digestion. Food Digestion, 3, 63–77.CrossRefGoogle Scholar
  2. Abrams, S. A. (2003). Using stable isotopes to assess the bioavailability of minerals in food-fortification programs. Forum of Nutrition, 56, 312–313.PubMedGoogle Scholar
  3. Alminger, M., Aura, A.-M., Bohn, T., Dufour, C., El, S. N., Gomes, A., et al. (2014). In vitro models for studying secondary plant metabolite digestion and bioaccessibility. Comprehensive Reviews in Food Science and Food Safety, 13, 413–436.CrossRefGoogle Scholar
  4. AOAC International. (1995). AOAC official methods program. Journal of AOAC International, 78, 143A–160A; Appendix D.Google Scholar
  5. Babinszky, L., Van der Meer, J. M., Boer, H., & den Hartog, L. A. (1990). An in-vitro method for the prediction of digestible crude protein content in pig feeds. Journal of Science and Food Agriculture, 50, 173–178.CrossRefGoogle Scholar
  6. Baker, D. H. (2008). Animal models in nutrition research. The Journal of Nutrition, 138, 391–396.CrossRefGoogle Scholar
  7. Barros, L., Retamal, C., Torres, H., Zúñiga, R. N., & Troncoso, E. (2016). Development of an in vitro mechanical gastric system (IMGS) with realistic peristalsis to assess lipid digestibility. Food Research International, 90, 216–225.CrossRefGoogle Scholar
  8. Bellmann, S., Lelieveld, J., Gorissen, T., Minekus, M., & Havenaar, R. (2016). Development of an advanced in vitro model and its evaluation versus human gastric physiology. Food Research International, 88, 191–198.CrossRefGoogle Scholar
  9. Bellmann, S., Minekus, M., Sanders, P., Bosgra, S., & Havenaar, R. (2017). Human glycemic response curves after intake of carbohydrate foods are accurately predicted by combining in vitro gastrointestinal digestion with in silico kinetic modeling. Clinical Nutrition Experimental, 17, 8–22.CrossRefGoogle Scholar
  10. Bodwell, C. E., Satterlee, L. D., & Hackler, L. R. (1980). Protein digestibility of the same protein preparations by humans and rat assays and by in vitro enzymatic digestion methods. The American Journal of Clinical Nutrition, 33, 677–686.CrossRefGoogle Scholar
  11. Bourlieu, C., Ménard, O., Bouzerzour, K., Mandalari, G., Macierzanka, A., Mackie, A. R., et al. (2014). Specificity of infant digestive conditions: Some clues for developing relevant in vitro models. Critical Reviews in Food Science and Nutrition, 54, 1427–1457.CrossRefGoogle Scholar
  12. Brouns, F., Bjorck, I., Frayn, K. N., Gibbs, A. L., Lang, V., Slama, G., et al. (2005). Glycaemic index methodology. Nutrition Research Reviews, 18, 145–171.CrossRefGoogle Scholar
  13. Buchgraber, M., & Karaali, A. (2005). Compilation of standardized analytical methods for the analysis of active ingredients in functional foods. Report EUR 21831. Belgium: Geel.Google Scholar
  14. Cederholm, T., Barazzoni, R., Austin, P., Ballmer, P., Biolo, G., Bischoff, S. C., et al. (2017). ESPEN guidelines on definitions and terminology of clinical nutrition. Clinical Nutrition, 36, 49–64.CrossRefGoogle Scholar
  15. Culen, M., Rezacova, A., Jampilek, J., & Dohnal, J. (2013). Designing a dynamic dissolution method: A review of instrumental options and corresponding physiology of stomach and small intestine. Journal of Pharmaceutical Sciences, 102(9), 2995–3017. https://doi.org/10.1002/jps.23494CrossRefPubMedGoogle Scholar
  16. Déat, E., Blanquet-Diot, S., Jarrige, J.-F., Denis, S., Beyssac, E., & Alric, M. (2009). Combining the dynamic TNO-gastrointestinal tract system with a Caco-2 cell culture model: Application to the assessment of lycopene and r-tocopherol bioavailability from a whole food. Journal of Agricultural and Food Chemistry, 57, 11314–11320 (Correction of Fig. 4: JAFC p 11314).CrossRefGoogle Scholar
  17. Deglaire, A., Bos, C., Tomé, D., & Moughan, P. J. (2009). Ileal digestibility of dietary protein in the growing pig and adult human. The British Journal of Nutrition, 102, 1752–1759.CrossRefGoogle Scholar
  18. Denis, S., Sayd, T., Georges, A., Chambon, C., Chalancon, S., Santé-Lhoutellier, V., et al. (2016). Digestion of cooked meat proteins is slightly affected by age as assessed using the dynamic gastrointestinal TIM model and mass spectrometry. Food Function, 7, 2682–2691.CrossRefGoogle Scholar
  19. DiMagno, E. P., & Layer, P. (1993). Human exocrine pancreatic enzyme secretion. In V. L. W. Go et al. (Eds.), The pancreas: Biology, pathology and disease. New York: Raven Press.Google Scholar
  20. Dupont, D., Blanquet, S., Bornhorst, G., Bornhorst, G., Cueva, C., Deglaire, A., et al. (2017). Can dynamic in vitro digestion systems mimic physiological reality? Critical Reviews in Food Science and Nutrition, 57(15), 3313–3331.CrossRefGoogle Scholar
  21. Ecker, J., & Liebisch, G. (2014). Application of stable isotopes to investigate the metabolism of fatty acids, glycerophospholipid and sphingolipid species. Progress in Lipid Research, 54, 14–31.CrossRefGoogle Scholar
  22. FAO. (2003). Food energy—Methods of analysis and conversion factors (Food and Nutrition Paper 77). Rome.Google Scholar
  23. FAO. (2013). Dietary protein quality evaluation in human nutrition (FAO Food and Nutrition Paper no. 92). FAO Expert Consultation. Rome: FAO.Google Scholar
  24. Fernandez-Garcia, E., Carvajal-Lerida, I., & Perez-Galvez, A. (2009). In vitro bioaccessibility assessment as a prediction tool of nutrition efficacy. Nutrition Research, 29, 751–760.CrossRefGoogle Scholar
  25. Fondaco, D., AlHasawi, F., Lan, Y., Ben-Elazar, S., Connolly, K., & Rogers, M. A. (2015). Biophysical aspects of lipid digestion in human breast milk and Similac infant formulas. Food Biophysics, 10, 282–291.CrossRefGoogle Scholar
  26. Fuller, M. F., & Tomé, D. (2005). In vivo determination of amino acid bioavailability in humans and animal models. Journal of the AOAC International, 88, 923–934.Google Scholar
  27. Gallaher, D. D. (1992). Animal models in human nutrition research. Nutrition in Clinical Practice, 7, 37–39.CrossRefGoogle Scholar
  28. Geboes, K., Bammens, B., Luypaerts, A., Malheiros, R., Buyse, J., Evenepoel, P., et al. (2004). Validation of a new test meal for a protein digestion breath test in humans. The Journal of Nutrition, 134, 806–810.CrossRefGoogle Scholar
  29. Gervais, R., Gagnon, F., Kheadr, E. E., Van Calsteren, M.-R., Farnworth, E. R., Fliss, I., et al. (2009). Bioaccessibility of fatty acids from conjugated linoleic acid-enriched milk and milk emulsions studied in a dynamic in vitro gastrointestinal model. International Dairy Journal, 19, 574–581.CrossRefGoogle Scholar
  30. Guerra, A., Etienne-Mesmin, L., Livrelli, V., Denis, S., Blanquet-Diot, S., & Alric, M. (2012). Relevance and challenges in modeling human gastric and small intestinal digestion. Trends in Biotechnology, 30, 591–600.CrossRefGoogle Scholar
  31. Guilloteau, P., Zabielski, R., Hammon, H. M., & Metges, C. C. (2010). Nutritional programming of gastrointestinal tract development. Is the pig a good model for man? Nutrition Research Reviews, 23, 4–22.CrossRefGoogle Scholar
  32. Havenaar, R., Maathuis, A., de Jong, A., Mancinelli, D., Berger, A., & Bellmann, S. (2016). Herring roe protein had a high digestible indispensable amino acid score (DIAAS) using a dynamic in vitro gastrointestinal model. Nutrition Research, 36, 798–807.CrossRefGoogle Scholar
  33. Institute for Reference Materials and Measurements. (2015). Certified reference materials 2015. Belgium: IRMM, Geel.Google Scholar
  34. Kamstrup, D., Berthelsen, R., Sasene, P. J., Selen, A., & Müllertz, A. (2017). In vitro model simulating gastro-intestinal digestion in the pediatric population (neonates and young infants). AAPS PharmSciTech, 18, 317–329.CrossRefGoogle Scholar
  35. Lam, Y. Y., & Ravussin, E. (2016). Analysis of energy metabolism in humans: A review of methodologies. Molecular Metabolism, 5, 1067–1071.CrossRefGoogle Scholar
  36. Lovegrove, J. A., Hodson, L., Sharma, S., & Lanham-New, S. A. (2015). Animal models in nutrition research. In A. M. Salter (Ed.), Nutrition research methodologies. Oxford: Wiley.CrossRefGoogle Scholar
  37. Maathuis, A., Havenaar, R., He, T., & Bellmann, S. (2017). Protein digestion and quality of goat and cow milk infant formula and human milk under simulated infant conditions. Journal of Pediatric Gastroenterology and Nutrition, 65(6), 661–666. https://doi.org/10.1097/MPG.0000000000001740CrossRefPubMedPubMedCentralGoogle Scholar
  38. Macagnan, F. T., Da Silva, L. P., & Hecktheuer, L. H. (2016). Dietary fibre: The scientific search for an ideal definition and methodology of analysis, and its physiological importance as a carrier of bioactive compounds. Food Research International, 85, 144–154.CrossRefGoogle Scholar
  39. Maldonado-Valderrama, J., Wilde, P., Macierzanka, A., & Mackie, A. (2011). The role of bile salts in digestion. Advances in Colloid and Interface Science, 165, 36–46.CrossRefGoogle Scholar
  40. McCue, M., & Welch, K. C. (2016). 13C-Breath testing in animals: Theory, applications, and future directions. Journal of Comparative Physiology B, 186, 265–285.CrossRefGoogle Scholar
  41. Miller Jones, J. (2014). CODEX-aligned dietary fiber definitions help to bridge the ‘fiber gab’. Nutrition Journal, 13, 34–44.CrossRefGoogle Scholar
  42. Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., et al. (2014). A standardised static in vitro digestion method suitable for food—An international consensus. Food Function, 5, 1113–1124.CrossRefGoogle Scholar
  43. Minekus, M., Marteau, P., Havenaar, R., & Huis in ‘t Veld, J. (1995). A multicompartmental dynamic computer-controlled model simulating the stomach and small intestine. Alternatives To Laboratory Animals (ATLA), 23, 197–209.Google Scholar
  44. Nguyen, T. T. P., Bhandari, B., Cichero, J., & Prakash, S. (2015). A comprehensive review on in vitro digestion of infant formula. Food Research International, 76, 373–386.CrossRefGoogle Scholar
  45. Picariello, G., Ferranti, P., & Addeo, F. (2016). Use of brush border membrane vesicles to simulate the human intestinal digestion. Food Research International, 88, 327–335.CrossRefGoogle Scholar
  46. Puiman, P., & Stoll, B. (2008). Animal models to study neonatal nutrition in humans. Current Opinion in Clinical Nutrition and Metabolic Care, 11, 601–606.CrossRefGoogle Scholar
  47. Rowan, A. M., Moughan, P. J., Wilson, M. N., Maher, K., & Tasman-Jones, C. (1994). Comparison of the ileal and fecal digestibility of dietary amino acids in adult humans and evaluation of the pig as model animal for digestion studies in man. The British Journal of Nutrition, 71, 29–42.CrossRefGoogle Scholar
  48. Schmitt, J. A. J., Bouzamondo, H., Brighenti, F., Kies, A. K., Macdonald, I., Pfeiffer, A. F. H., et al. (2012). The application of good clinical practice in nutrition research. European Journal of Clinical Nutrition, 66, 1280–1281. https://doi.org/10.1038/ejcn.2012.132CrossRefPubMedGoogle Scholar
  49. Swindle, M. M., Smith, A. C., & Goodrich, J. A. (1998). Chronic cannulation and fistulization procedures in swine: A review and recommendations. Journal of Investigative Surgery, 11, 7–20.CrossRefGoogle Scholar
  50. Ting, Y., Zhao, Q., Xia, C., & Huang, Q. (2015). Using in vitro and in vivo models to evaluate the oral bioavailability of nutraceuticals. Journal of Agricultural and Food Chemistry, 63, 1332–1338.CrossRefGoogle Scholar
  51. Van Lieshout, M., West, C. E., & Van Breemen, R. B. (2003). Isotopic tracer techniques for studying the bioavailability and bioefficacy of dietary carotenoids, particularly β-carotene, in humans: A review. The American Journal of Clinical Nutrition, 77, 12–28.CrossRefGoogle Scholar
  52. Van Loo-Bouwman, C. A., Naber, T. H. J., Minekus, M., van Breemen, R. B., Hulshof, P. J., & Schaafsma, G. (2014). Food matrix effects on bioaccessibility of β-carotene can be measured in an in vitro gastrointestinal model. Journal of Agricultural and Food Chemistry, 62, 950–955.CrossRefGoogle Scholar
  53. Varum, F. J. O., Hatton, G. B., & Basit, A. W. (2013). Food, physiology and drug delivery. International Journal of Pharmaceutics, 457, 446–460.CrossRefGoogle Scholar
  54. Verhoeckx, K. (2015). In K. Verhoeckx, P. Cotter, I. Lopez-Exposito, et al. (Eds.). The impact of food bioactives on health: In vitro and ex-vivo models. Springer Open Access: www.springer.com/kr/book/978331957917 (ISBN 978-3-319-16104-4).Google Scholar
  55. Verwei, M., Arkbåge, K., Havenaar, R., van den Berg, H., Witthöft, C., & Schaafsma, G. (2003). Folic acid and 5-Methyl-tetrahydrofolate in fortified milk are bioaccessible as determined in a dynamic in vitro gastrointestinal model. The Journal of Nutrition, 133, 2377–2383.CrossRefGoogle Scholar
  56. Verwei, M., Freidig, A. P., Havenaar, R., & Groten, J. P. (2006). Predicted serum folate concentrations based on in vitro studies and kinetic modeling are consistent with measured folate concentrations in humans. The Journal of Nutrition, 136, 3074–3078.CrossRefGoogle Scholar
  57. Wang, Y., & Proctor, S. D. (2013). Current issues surrounding the definition of trans-fatty acids: Implications for health, industry and food labels. The British Journal of Nutrition, 110, 1369–1383.CrossRefGoogle Scholar
  58. Welch, R. W., Antoine, J.-M., Berta, J.-L., Bub, A., de Vries, J., Guarner, F., et al. (2011). Guidelines for the design, conduct and reporting of human intervention studies to evaluate the health benefits of foods. The British Journal of Nutrition, 106, S3–S15.CrossRefGoogle Scholar
  59. Williams, C. F., Walton, G. E., Jiang, L., Plummer, S., Garaiova, I., & Gibson, G. R. (2015). Comparative analysis of intestinal tract models. Annual Review of Food Science and Technology, 6, 329–350.CrossRefGoogle Scholar
  60. Woodside, J. V., Koletzko, B. V., Patterson, C. C., & Welch, R. W. (2013). Scientific standards for human intervention trials evaluating health benefits of foods, and their application to infants, children and adolescents. World Review of Nutrition and Dietetics, 108, 18–31.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Triskelion B.V.ZeistThe Netherlands

Personalised recommendations