Challenges in Quantifying Digestion
Abstract
This chapter discusses the challenges in relation to food and nutrient terminology, chemical analysis, human and animal digestion studies as well as those related to in vitro digestion studies with static methods and dynamic gastrointestinal models. Although it looks simple, using uniform terminology and definitions in food and digestion science is the first challenge. The same is true for the analysis methods for determining the concentrations of food compounds in samples from in vivo and in vitro studies. Effort has been taken by different institutes and working groups to standardize these challenges. Then comes the challenge in setting up of studies, be it human clinical studies, animal studies, or in vitro studies. Each type of study has its specific challenges that should be recognized before starting digestion experiments. We discuss these challenges to support the researcher, but we do realize that not all aspects are covered.
Keywords
Food digestion In vivo studies Animal studies In vitro studies In vitro digestion models Food analysis StandardizationReferences
- Abrahamse, E., Minekus, M., van Aken, G. A., van de Heijning, B., Knol, J., Bartke, N., et al. (2012). Development of the digestive system–Experimental challenges and approaches of infant lipid digestion. Food Digestion, 3, 63–77.CrossRefGoogle Scholar
- Abrams, S. A. (2003). Using stable isotopes to assess the bioavailability of minerals in food-fortification programs. Forum of Nutrition, 56, 312–313.PubMedGoogle Scholar
- Alminger, M., Aura, A.-M., Bohn, T., Dufour, C., El, S. N., Gomes, A., et al. (2014). In vitro models for studying secondary plant metabolite digestion and bioaccessibility. Comprehensive Reviews in Food Science and Food Safety, 13, 413–436.CrossRefGoogle Scholar
- AOAC International. (1995). AOAC official methods program. Journal of AOAC International, 78, 143A–160A; Appendix D.Google Scholar
- Babinszky, L., Van der Meer, J. M., Boer, H., & den Hartog, L. A. (1990). An in-vitro method for the prediction of digestible crude protein content in pig feeds. Journal of Science and Food Agriculture, 50, 173–178.CrossRefGoogle Scholar
- Baker, D. H. (2008). Animal models in nutrition research. The Journal of Nutrition, 138, 391–396.CrossRefGoogle Scholar
- Barros, L., Retamal, C., Torres, H., Zúñiga, R. N., & Troncoso, E. (2016). Development of an in vitro mechanical gastric system (IMGS) with realistic peristalsis to assess lipid digestibility. Food Research International, 90, 216–225.CrossRefGoogle Scholar
- Bellmann, S., Lelieveld, J., Gorissen, T., Minekus, M., & Havenaar, R. (2016). Development of an advanced in vitro model and its evaluation versus human gastric physiology. Food Research International, 88, 191–198.CrossRefGoogle Scholar
- Bellmann, S., Minekus, M., Sanders, P., Bosgra, S., & Havenaar, R. (2017). Human glycemic response curves after intake of carbohydrate foods are accurately predicted by combining in vitro gastrointestinal digestion with in silico kinetic modeling. Clinical Nutrition Experimental, 17, 8–22.CrossRefGoogle Scholar
- Bodwell, C. E., Satterlee, L. D., & Hackler, L. R. (1980). Protein digestibility of the same protein preparations by humans and rat assays and by in vitro enzymatic digestion methods. The American Journal of Clinical Nutrition, 33, 677–686.CrossRefGoogle Scholar
- Bourlieu, C., Ménard, O., Bouzerzour, K., Mandalari, G., Macierzanka, A., Mackie, A. R., et al. (2014). Specificity of infant digestive conditions: Some clues for developing relevant in vitro models. Critical Reviews in Food Science and Nutrition, 54, 1427–1457.CrossRefGoogle Scholar
- Brouns, F., Bjorck, I., Frayn, K. N., Gibbs, A. L., Lang, V., Slama, G., et al. (2005). Glycaemic index methodology. Nutrition Research Reviews, 18, 145–171.CrossRefGoogle Scholar
- Buchgraber, M., & Karaali, A. (2005). Compilation of standardized analytical methods for the analysis of active ingredients in functional foods. Report EUR 21831. Belgium: Geel.Google Scholar
- Cederholm, T., Barazzoni, R., Austin, P., Ballmer, P., Biolo, G., Bischoff, S. C., et al. (2017). ESPEN guidelines on definitions and terminology of clinical nutrition. Clinical Nutrition, 36, 49–64.CrossRefGoogle Scholar
- Culen, M., Rezacova, A., Jampilek, J., & Dohnal, J. (2013). Designing a dynamic dissolution method: A review of instrumental options and corresponding physiology of stomach and small intestine. Journal of Pharmaceutical Sciences, 102(9), 2995–3017. https://doi.org/10.1002/jps.23494CrossRefPubMedGoogle Scholar
- Déat, E., Blanquet-Diot, S., Jarrige, J.-F., Denis, S., Beyssac, E., & Alric, M. (2009). Combining the dynamic TNO-gastrointestinal tract system with a Caco-2 cell culture model: Application to the assessment of lycopene and r-tocopherol bioavailability from a whole food. Journal of Agricultural and Food Chemistry, 57, 11314–11320 (Correction of Fig. 4: JAFC p 11314).CrossRefGoogle Scholar
- Deglaire, A., Bos, C., Tomé, D., & Moughan, P. J. (2009). Ileal digestibility of dietary protein in the growing pig and adult human. The British Journal of Nutrition, 102, 1752–1759.CrossRefGoogle Scholar
- Denis, S., Sayd, T., Georges, A., Chambon, C., Chalancon, S., Santé-Lhoutellier, V., et al. (2016). Digestion of cooked meat proteins is slightly affected by age as assessed using the dynamic gastrointestinal TIM model and mass spectrometry. Food Function, 7, 2682–2691.CrossRefGoogle Scholar
- DiMagno, E. P., & Layer, P. (1993). Human exocrine pancreatic enzyme secretion. In V. L. W. Go et al. (Eds.), The pancreas: Biology, pathology and disease. New York: Raven Press.Google Scholar
- Dupont, D., Blanquet, S., Bornhorst, G., Bornhorst, G., Cueva, C., Deglaire, A., et al. (2017). Can dynamic in vitro digestion systems mimic physiological reality? Critical Reviews in Food Science and Nutrition, 57(15), 3313–3331.CrossRefGoogle Scholar
- Ecker, J., & Liebisch, G. (2014). Application of stable isotopes to investigate the metabolism of fatty acids, glycerophospholipid and sphingolipid species. Progress in Lipid Research, 54, 14–31.CrossRefGoogle Scholar
- FAO. (2003). Food energy—Methods of analysis and conversion factors (Food and Nutrition Paper 77). Rome.Google Scholar
- FAO. (2013). Dietary protein quality evaluation in human nutrition (FAO Food and Nutrition Paper no. 92). FAO Expert Consultation. Rome: FAO.Google Scholar
- Fernandez-Garcia, E., Carvajal-Lerida, I., & Perez-Galvez, A. (2009). In vitro bioaccessibility assessment as a prediction tool of nutrition efficacy. Nutrition Research, 29, 751–760.CrossRefGoogle Scholar
- Fondaco, D., AlHasawi, F., Lan, Y., Ben-Elazar, S., Connolly, K., & Rogers, M. A. (2015). Biophysical aspects of lipid digestion in human breast milk and Similac infant formulas. Food Biophysics, 10, 282–291.CrossRefGoogle Scholar
- Fuller, M. F., & Tomé, D. (2005). In vivo determination of amino acid bioavailability in humans and animal models. Journal of the AOAC International, 88, 923–934.Google Scholar
- Gallaher, D. D. (1992). Animal models in human nutrition research. Nutrition in Clinical Practice, 7, 37–39.CrossRefGoogle Scholar
- Geboes, K., Bammens, B., Luypaerts, A., Malheiros, R., Buyse, J., Evenepoel, P., et al. (2004). Validation of a new test meal for a protein digestion breath test in humans. The Journal of Nutrition, 134, 806–810.CrossRefGoogle Scholar
- Gervais, R., Gagnon, F., Kheadr, E. E., Van Calsteren, M.-R., Farnworth, E. R., Fliss, I., et al. (2009). Bioaccessibility of fatty acids from conjugated linoleic acid-enriched milk and milk emulsions studied in a dynamic in vitro gastrointestinal model. International Dairy Journal, 19, 574–581.CrossRefGoogle Scholar
- Guerra, A., Etienne-Mesmin, L., Livrelli, V., Denis, S., Blanquet-Diot, S., & Alric, M. (2012). Relevance and challenges in modeling human gastric and small intestinal digestion. Trends in Biotechnology, 30, 591–600.CrossRefGoogle Scholar
- Guilloteau, P., Zabielski, R., Hammon, H. M., & Metges, C. C. (2010). Nutritional programming of gastrointestinal tract development. Is the pig a good model for man? Nutrition Research Reviews, 23, 4–22.CrossRefGoogle Scholar
- Havenaar, R., Maathuis, A., de Jong, A., Mancinelli, D., Berger, A., & Bellmann, S. (2016). Herring roe protein had a high digestible indispensable amino acid score (DIAAS) using a dynamic in vitro gastrointestinal model. Nutrition Research, 36, 798–807.CrossRefGoogle Scholar
- Institute for Reference Materials and Measurements. (2015). Certified reference materials 2015. Belgium: IRMM, Geel.Google Scholar
- Kamstrup, D., Berthelsen, R., Sasene, P. J., Selen, A., & Müllertz, A. (2017). In vitro model simulating gastro-intestinal digestion in the pediatric population (neonates and young infants). AAPS PharmSciTech, 18, 317–329.CrossRefGoogle Scholar
- Lam, Y. Y., & Ravussin, E. (2016). Analysis of energy metabolism in humans: A review of methodologies. Molecular Metabolism, 5, 1067–1071.CrossRefGoogle Scholar
- Lovegrove, J. A., Hodson, L., Sharma, S., & Lanham-New, S. A. (2015). Animal models in nutrition research. In A. M. Salter (Ed.), Nutrition research methodologies. Oxford: Wiley.CrossRefGoogle Scholar
- Maathuis, A., Havenaar, R., He, T., & Bellmann, S. (2017). Protein digestion and quality of goat and cow milk infant formula and human milk under simulated infant conditions. Journal of Pediatric Gastroenterology and Nutrition, 65(6), 661–666. https://doi.org/10.1097/MPG.0000000000001740CrossRefPubMedPubMedCentralGoogle Scholar
- Macagnan, F. T., Da Silva, L. P., & Hecktheuer, L. H. (2016). Dietary fibre: The scientific search for an ideal definition and methodology of analysis, and its physiological importance as a carrier of bioactive compounds. Food Research International, 85, 144–154.CrossRefGoogle Scholar
- Maldonado-Valderrama, J., Wilde, P., Macierzanka, A., & Mackie, A. (2011). The role of bile salts in digestion. Advances in Colloid and Interface Science, 165, 36–46.CrossRefGoogle Scholar
- McCue, M., & Welch, K. C. (2016). 13C-Breath testing in animals: Theory, applications, and future directions. Journal of Comparative Physiology B, 186, 265–285.CrossRefGoogle Scholar
- Miller Jones, J. (2014). CODEX-aligned dietary fiber definitions help to bridge the ‘fiber gab’. Nutrition Journal, 13, 34–44.CrossRefGoogle Scholar
- Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., et al. (2014). A standardised static in vitro digestion method suitable for food—An international consensus. Food Function, 5, 1113–1124.CrossRefGoogle Scholar
- Minekus, M., Marteau, P., Havenaar, R., & Huis in ‘t Veld, J. (1995). A multicompartmental dynamic computer-controlled model simulating the stomach and small intestine. Alternatives To Laboratory Animals (ATLA), 23, 197–209.Google Scholar
- Nguyen, T. T. P., Bhandari, B., Cichero, J., & Prakash, S. (2015). A comprehensive review on in vitro digestion of infant formula. Food Research International, 76, 373–386.CrossRefGoogle Scholar
- Picariello, G., Ferranti, P., & Addeo, F. (2016). Use of brush border membrane vesicles to simulate the human intestinal digestion. Food Research International, 88, 327–335.CrossRefGoogle Scholar
- Puiman, P., & Stoll, B. (2008). Animal models to study neonatal nutrition in humans. Current Opinion in Clinical Nutrition and Metabolic Care, 11, 601–606.CrossRefGoogle Scholar
- Rowan, A. M., Moughan, P. J., Wilson, M. N., Maher, K., & Tasman-Jones, C. (1994). Comparison of the ileal and fecal digestibility of dietary amino acids in adult humans and evaluation of the pig as model animal for digestion studies in man. The British Journal of Nutrition, 71, 29–42.CrossRefGoogle Scholar
- Schmitt, J. A. J., Bouzamondo, H., Brighenti, F., Kies, A. K., Macdonald, I., Pfeiffer, A. F. H., et al. (2012). The application of good clinical practice in nutrition research. European Journal of Clinical Nutrition, 66, 1280–1281. https://doi.org/10.1038/ejcn.2012.132CrossRefPubMedGoogle Scholar
- Swindle, M. M., Smith, A. C., & Goodrich, J. A. (1998). Chronic cannulation and fistulization procedures in swine: A review and recommendations. Journal of Investigative Surgery, 11, 7–20.CrossRefGoogle Scholar
- Ting, Y., Zhao, Q., Xia, C., & Huang, Q. (2015). Using in vitro and in vivo models to evaluate the oral bioavailability of nutraceuticals. Journal of Agricultural and Food Chemistry, 63, 1332–1338.CrossRefGoogle Scholar
- Van Lieshout, M., West, C. E., & Van Breemen, R. B. (2003). Isotopic tracer techniques for studying the bioavailability and bioefficacy of dietary carotenoids, particularly β-carotene, in humans: A review. The American Journal of Clinical Nutrition, 77, 12–28.CrossRefGoogle Scholar
- Van Loo-Bouwman, C. A., Naber, T. H. J., Minekus, M., van Breemen, R. B., Hulshof, P. J., & Schaafsma, G. (2014). Food matrix effects on bioaccessibility of β-carotene can be measured in an in vitro gastrointestinal model. Journal of Agricultural and Food Chemistry, 62, 950–955.CrossRefGoogle Scholar
- Varum, F. J. O., Hatton, G. B., & Basit, A. W. (2013). Food, physiology and drug delivery. International Journal of Pharmaceutics, 457, 446–460.CrossRefGoogle Scholar
- Verhoeckx, K. (2015). In K. Verhoeckx, P. Cotter, I. Lopez-Exposito, et al. (Eds.). The impact of food bioactives on health: In vitro and ex-vivo models. Springer Open Access: www.springer.com/kr/book/978331957917 (ISBN 978-3-319-16104-4).Google Scholar
- Verwei, M., Arkbåge, K., Havenaar, R., van den Berg, H., Witthöft, C., & Schaafsma, G. (2003). Folic acid and 5-Methyl-tetrahydrofolate in fortified milk are bioaccessible as determined in a dynamic in vitro gastrointestinal model. The Journal of Nutrition, 133, 2377–2383.CrossRefGoogle Scholar
- Verwei, M., Freidig, A. P., Havenaar, R., & Groten, J. P. (2006). Predicted serum folate concentrations based on in vitro studies and kinetic modeling are consistent with measured folate concentrations in humans. The Journal of Nutrition, 136, 3074–3078.CrossRefGoogle Scholar
- Wang, Y., & Proctor, S. D. (2013). Current issues surrounding the definition of trans-fatty acids: Implications for health, industry and food labels. The British Journal of Nutrition, 110, 1369–1383.CrossRefGoogle Scholar
- Welch, R. W., Antoine, J.-M., Berta, J.-L., Bub, A., de Vries, J., Guarner, F., et al. (2011). Guidelines for the design, conduct and reporting of human intervention studies to evaluate the health benefits of foods. The British Journal of Nutrition, 106, S3–S15.CrossRefGoogle Scholar
- Williams, C. F., Walton, G. E., Jiang, L., Plummer, S., Garaiova, I., & Gibson, G. R. (2015). Comparative analysis of intestinal tract models. Annual Review of Food Science and Technology, 6, 329–350.CrossRefGoogle Scholar
- Woodside, J. V., Koletzko, B. V., Patterson, C. C., & Welch, R. W. (2013). Scientific standards for human intervention trials evaluating health benefits of foods, and their application to infants, children and adolescents. World Review of Nutrition and Dietetics, 108, 18–31.CrossRefGoogle Scholar