Advertisement

Quantifying Digestion Products: Physicochemical Aspects

  • Uri LesmesEmail author
Chapter

Abstract

Engineering the digestibility of foods mandates control over the complex compositions and structures that form, disintegrate, and are taken up in the human alimentary canal. Such rational design of oral intake can be attained through careful efforts to understand the underlying determinants of bioaccessibility and bioavailability. Thus, adequate quantification of the physicochemical aspects of digesta is of high importance. This chapter focuses on the practical aspects of analyzing digesta and the multifaceted scientific and technological challenges involved. Readers are provided with an overview of the physicochemical parameters that are commonly determined in digesta, the rational for method selection and the current literature detailing biochemical, chemical, and physical analyses of digesta. Hopefully, this will encourage more research professionals to adapt a holistic foodomics approach and coupling it with advanced analytics and computerization tools (e.g., big-data handling) in order to understand the digestive fate of foods. This will greatly stimulate and facilitate interdisciplinary endeavors that will help shape the future of food science and food manufacturing.

Keywords

Bioaccessibility Microstructure Chemical analysis Rheology 

References

  1. Alamed, J., Chaiyasit, W., McClements, D. J., & Decker, E. A. (2009). Relationships between free radical scavenging and antioxidant activity in foods. Journal of Agricultural and Food Chemistry, 57(7), 2969–2976.PubMedCrossRefGoogle Scholar
  2. Albenberg, L. G., & Wu, G. D. (2014). Diet and the intestinal microbiome: Associations, functions, and implications for health and disease. Gastroenterology, 146(6), 1564–1572.PubMedPubMedCentralCrossRefGoogle Scholar
  3. AlHasawi, F. M., Fondaco, D., Ben-Elazar, K., Ben-Elazar, S., Fan, Y. Y., Corradini, M. G., et al. (2017). In vitro measurements of luminal viscosity and glucose/maltose bioaccessibility for oat bran, instant oats, and steel cut oats. Food Hydrocolloids, 70, 293–303.CrossRefGoogle Scholar
  4. Apostolovic, D., Stanic-Vucinic, D., de Jongh, H. H. J., de Jong, G. A. H., Mihailovic, J., Radosavljevic, J., et al. (2016). Conformational stability of digestion-resistant peptides of peanut conglutins reveals the molecular basis of their allergenicity. Scientific Reports, 6, 29249.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Belenguer, A., Duncan, S. H., Calder, A. G., Holtrop, G., Louis, P., Lobley, G. E., et al. (2006). Two routes of metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut. Applied and Environmental Microbiology, 72(5), 3593–3599.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Belyaeva, L. Y., & Beklemishev, M. K. (2011). Determination of glucose by a kinetic method on a thin-layer chromatogram using the oxidation of 3,3′,5,5′-tetramethylbenzidine with hydrogen peroxide. Journal of Analytical Chemistry, 66(4), 425–432.CrossRefGoogle Scholar
  7. Bogh, K. L., & Madsen, C. B. (2016). Food allergens: Is there a correlation between stability to digestion and allergenicity? Critical Reviews in Food Science and Nutrition, 56(9), 1545–1567.PubMedCrossRefGoogle Scholar
  8. Bohn, T., Carriere, F., Day, L., Deglaire, A., Egger, L., Freitas, D., et al. (2017). Correlation between in vitro and in vivo data on food digestion. What can we predict with static in vitro digestion models? Critical Reviews in Food Science and Nutrition. https://doi.org/10.1080/10408398.2017.1315362PubMedCrossRefGoogle Scholar
  9. Bordoni, A., Laghi, L., Babini, E., Di Nunzio, M., Picone, G., Ciampa, A., et al. (2014). The foodomics approach for the evaluation of protein bioaccessibility in processed meat upon in vitro digestion. Electrophoresis, 35(11), 1607–1614.PubMedCrossRefGoogle Scholar
  10. Bornhorst, G. M., Ferrua, M. J., & Singh, R. P. (2015). A proposed food breakdown classification system to predict food behavior during gastric digestion. Journal of Food Science, 80(5), R924–R934.PubMedCrossRefPubMedCentralGoogle Scholar
  11. Bornhorst, G. M., Gouseti, O., Wickham, M. S. J., & Bakalis, S. (2016). Engineering digestion: Multiscale processes of food digestion. Journal of Food Science, 81(3), R534–R543.PubMedCrossRefGoogle Scholar
  12. Buzanovskii, V. A. (2015). Methods for the determination of glucose in blood. Part 1. Review Journal of Chemistry, 5(1), 30–81.CrossRefGoogle Scholar
  13. Capolino, P., Guérin, C., Paume, J., Giallo, J., Ballester, J. M., Cavalier, J. F., et al. (2011). In vitro gastrointestinal lipolysis: Replacement of human digestive lipases by a combination of rabbit gastric and porcine pancreatic extracts. Food Digestion, 2(1–3), 43–51.CrossRefGoogle Scholar
  14. Capron, I., Yvon, M., & Muller, G. (1996). In-vitro gastric stability of carrageenan. Food Hydrocolloids, 10(2), 239–244.CrossRefGoogle Scholar
  15. Chu, B. S., Gunning, A. P., Rich, G. T., Ridout, M. J., Faulks, R. M., Wickham, M. S. J., et al. (2010). Adsorption of bile salts and pancreatic colipase and lipase onto digalactosyldiacylglycerol and dipalmitoylphosphatidylcholine monolayers. Langmuir, 26(12), 9782–9793.PubMedCrossRefGoogle Scholar
  16. Chu, B. S., Rich, G. T., Ridout, M. J., Faulks, R. M., Wickham, M. S. J., & Wilde, P. J. (2009). Modulating pancreatic lipase activity with galactolipids: Effects of emulsion interfacial composition. Langmuir, 25(16), 9352–9360.PubMedCrossRefGoogle Scholar
  17. Clare Mills, E. N., Sancho, A. I., Rigby, N. M., Jenkins, J. A., & Mackie, A. R. (2009). Impact of food processing on the structural and allergenic properties of food allergens. Molecular Nutrition and Food Research, 53(8), 963–969.CrossRefGoogle Scholar
  18. Cohen, Y., Levi, M., Lesmes, U., Margier, M., Reboul, E., Livney, Y. D., et al. (2017). Re-assembled casein micelles improve in vitro bioavailability of vitamin D in a Caco-2 cell model. Food and Function, 8(6), 2133–2141.PubMedCrossRefGoogle Scholar
  19. Cohen, R., Schwartz, B., Peri, I., & Shimoni, E. (2011). Improving bioavailability and stability of genistein by complexation with high-amylose corn starch. Journal of Agricultural and Food Chemistry, 59(14), 7932–7938.PubMedCrossRefGoogle Scholar
  20. David-Birman, T., Mackie, A., & Lesmes, U. (2013). Impact of dietary fibers on the properties and proteolytic digestibility of lactoferrin nano-particles. Food Hydrocolloids, 31(1), 33–41.CrossRefGoogle Scholar
  21. de Oliveira, S. C., Bourlieu, C., Ménard, O., Bellanger, A., Henry, G., Rousseau, F., et al. (2016). Impact of pasteurization of human milk on preterm newborn in vitro digestion: Gastrointestinal disintegration, lipolysis and proteolysis. Food Chemistry, 211, 171–179.CrossRefGoogle Scholar
  22. Dupont, D., Mandalari, G., Molle, D., Jardin, J., Léonil, J., Faulks, R. M., et al. (2010). Comparative resistance of food proteins to adult and infant in vitro digestion models. Molecular Nutrition and Food Research, 54(6), 767–780.PubMedCrossRefGoogle Scholar
  23. Egger, L., Ménard, O., Delgado-Andrade, C., Alvito, P., Assunção, R., Balance, S., et al. (2015). The harmonized INFOGEST in vitro digestion method: From knowledge to action. Food Research International, 88, 217–225.CrossRefGoogle Scholar
  24. Englyst, K. N.; Hudson, G. J.; Englyst, H. N.; Englyst, K. N.; Hudson, G. J.; Englyst, H. N. Starch analysis in food. In Meyers, R. A. Encyclopedia of analytical chemistry; Wiley: Chichester, 2006.Google Scholar
  25. Englyst, K. N., Liu, S., & Englyst, H. N. (2007a). Nutritional characterization and measurement of dietary carbohydrates. European Journal of Clinical Nutrition, 61, S19–S39.PubMedCrossRefGoogle Scholar
  26. Englyst, K., Liu, S., & Englyst, H. (2007b). Nutritional characterization and measurement of dietary carbohydrates. European Journal of Clinical Nutrition, 61, 19–39.CrossRefGoogle Scholar
  27. Etienne-mesmin, L., Denis, S., Guerra, A., Etienne-mesmin, L., Livrelli, V., Denis, S., et al. (2012). Relevance and challenges in modeling human gastric and small intestinal digestion (review, 2012).pdf. Trends in Biotechnology, 30(11), 591–600.PubMedCrossRefGoogle Scholar
  28. Ferranti, P., Nitride, C., Nicolai, M. A., Mamone, G., Picariello, G., Bordoni, A., et al. (2014). In vitro digestion of Bresaola proteins and release of potential bioactive peptides. Food Research International, 63, 157–169.CrossRefGoogle Scholar
  29. Flamm, G., Glinsmann, W., Kritchevsky, D., Prosky, L., & Roberfroid, M. (2001). Inulin and oligofructose as dietary fiber: A review of the evidence. Critical Reviews in Food Science and Nutrition, 41(5), 353–362.PubMedCrossRefGoogle Scholar
  30. Gamez, C., Paz Zafra, M., Sanz, V., Mazzeo, C., Dolores Ibanez, M., Sastre, J., et al. (2015). Simulated gastrointestinal digestion reduces the allergic reactivity of shrimp extract proteins and tropomyosin. Food Chemistry, 173, 475–481.PubMedCrossRefGoogle Scholar
  31. Gibson, G. R., & Roberfroid, M. B. (1995). Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. The Journal of Nutrition, 125(6), 1401–1412.PubMedCrossRefGoogle Scholar
  32. Haham, M., Ish-Shalom, S., Nodelman, M., Duek, I., Segal, E., Kustanovich, M., et al. (2012). Stability and bioavailability of vitamin D nanoencapsulated in casein micelles. Food and Function, 3(7), 737.PubMedCrossRefGoogle Scholar
  33. Hernández-Ledesma, B., Quirós, A., Amigo, L., & Recio, I. (2007). Identification of bioactive peptides after digestion of human milk and infant formula with pepsin and pancreatin. International Dairy Journal, 17(1), 42–49.CrossRefGoogle Scholar
  34. Hu, X., Lu, L., Fang, C., Duan, B., & Zhu, Z. (2015). Determination of apparent amylose content in rice by using paper-based microfluidic chips. Journal of Agricultural and Food Chemistry, 63(44), 9863–9868.PubMedCrossRefGoogle Scholar
  35. Huan, P. D. (2005). The chemistry behind antioxidant capacity assays the chemistry behind antioxidant capacity assays. Journal of Agricultural and Food Chemistry, 53(April), 1841–1856.CrossRefGoogle Scholar
  36. Humblet-Hua, K. N. P., Scheltens, G., van der Linden, E., & Sagis, L. M. C. (2011). Encapsulation systems based on ovalbumin fibrils and high methoxyl pectin. Food Hydrocolloids, 25(4), 569–576.CrossRefGoogle Scholar
  37. Hur, S. J., Lim, B. O., Decker, E. A., & McClements, D. J. (2011). In vitro human digestion models for food applications. Food Chemistry, 125(1), 1–12.CrossRefGoogle Scholar
  38. Jenkins, D. J., Wolever, T. M., Taylor, R. H., Barker, H., Fielden, H., Baldwin, J. M., et al. (1981). Glycemic index of foods: A physiological basis for carbohydrate exchange. The American Journal of Clinical Nutrition, 34(3), 362–366.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Jiménez-Saiz, R., Benedé, S., Molina, E., & López-Expósito, I. (2015). Effect of processing technologies on the allergenicity of food products. Critical Reviews in Food Science and Nutrition, 55(13), 1902–1917.PubMedCrossRefGoogle Scholar
  40. Joubran, Y., Mackie, A., & Lesmes, U. (2013). Impact of the Maillard reaction on the structure and functionality of lactoferrin. Food Chemistry, 141(April), 9–12.Google Scholar
  41. Kong, F., & Singh, R. P. (2011). Solid loss of carrots during simulated gastric digestion. Food Biophysics, 6(1), 84–93.PubMedCrossRefGoogle Scholar
  42. Kopf-Bolanz, K. A., Schwander, F., Gijs, M., Vergè, G., Portmann, R., & Egger, L. (2012). Validation of an in vitro digestive system for studying macronutrient decomposition in humans. The Journal of Nutrition, 142, 245–250.CrossRefGoogle Scholar
  43. Kopf-Bolanz, K. A., Schwander, F., Gijs, M., Vergères, G., Portmann, R., & Egger, L. (2014). Impact of milk processing on the generation of peptides during digestion. International Dairy Journal, 35(2), 130–138.CrossRefGoogle Scholar
  44. Kozu, H., Kobayashi, I., Nakajima, M., Neves, M. A., Uemura, K., Isoda, H., et al. (2017). Mixing characterization of liquid contents in human gastric digestion simulator equipped with gastric secretion and emptying. Biochemical Engineering Journal, 122, 85–90.CrossRefGoogle Scholar
  45. Kozu, H., Kobayashi, I., Nakajima, M., Uemura, K., Sato, S., & Ichikawa, S. (2010). Analysis of flow phenomena in gastric contents induced by human gastric peristalsis using CFD. Food Biophysics, 5(4), 330–336.CrossRefGoogle Scholar
  46. Lesmes, U., Barchechath, J., & Shimoni, E. (2008). Continuous dual feed homogenization for the production of starch inclusion complexes for controlled release of nutrients. Innovative Food Science and Emerging Technologies, 9(4), 507–515.CrossRefGoogle Scholar
  47. Lesmes, U., Beards, E. J., Gibson, G. R., Tuohy, K. M., & Shimoni, E. (2008). 77. Effects of resistant starch type III polymorphs on human colon microbiota and short chain fatty acids in human gut models. Journal of Agricultural and Food Chemistry, 56(13), 5415–5421.PubMedCrossRefGoogle Scholar
  48. Lesmes, U., & McClements, D. J. (2012). Controlling lipid digestibility: Response of lipid droplets coated by β-lactoglobulin-dextran Maillard conjugates to simulated gastrointestinal conditions. Food Hydrocolloids, 26(1), 221–230.CrossRefGoogle Scholar
  49. Levi, C. S., Alvito, P., Andrés, A., Assunção, R., Barberá, R., Blanquet-Diot, S., et al. (2016). Extending in vitro digestion models to specific human populations: Perspectives, practical tools and bio-relevant information. Trends in Food Science and Technology, 60, 52–63.CrossRefGoogle Scholar
  50. Li, Y., Hu, M., & McClements, D. J. (2011). Factors affecting lipase digestibility of emulsified lipids using an in vitro digestion model: Proposal for a standardised pH-stat method. Food Chemistry, 126(2), 498–505.CrossRefGoogle Scholar
  51. Liu, W., Kong, Y., Tu, P., Lu, J., Liu, C., Liu, W., et al. (2017). Physical–chemical stability and in vitro digestibility of hybrid nanoparticles based on the layer-by-layer assembly of lactoferrin and BSA on liposomes. Food and Function, 8(4), 1688–1697.PubMedCrossRefGoogle Scholar
  52. Liu, D., Parker, H. L., Curcic, J., Schwizer, W., Fried, M., Kozerke, S., et al. (2016). The visualisation and quantification of human gastrointestinal fat distribution with MRI: A randomised study in healthy subjects. The British Journal of Nutrition, 115(5), 903–912.PubMedCrossRefGoogle Scholar
  53. Liu, W., Ye, A., Liu, W., Liu, C., & Singh, H. (2013). Stability during in vitro digestion of lactoferrin-loaded liposomes prepared from milk fat globule membrane-derived phospholipids. Journal of Dairy Science, 96(4), 2061–2070.PubMedCrossRefGoogle Scholar
  54. Logan, K., Wright, A. J., & Goff, H. D. (2015). Correlating the structure and in vitro digestion viscosities of different pectin fibers to in vivo human satiety. Food and Function, 6(1), 63–71.PubMedCrossRefGoogle Scholar
  55. Louis, P., & Flint, H. J. (2009). Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiology Letters, 294(1), 1–8.PubMedCrossRefGoogle Scholar
  56. Loveday, S. M., Anema, S. G., & Singh, H. (2017). β-Lactoglobulin nanofibrils: The long and the short of it. International Dairy Journal, 67, 35–45.CrossRefGoogle Scholar
  57. Luo, Q., Borst, J. W., Westphal, A. H., Boom, R. M., & Janssen, A. E. M. (2017). Pepsin diffusivity in whey protein gels and its effect on gastric digestion. Food Hydrocolloids, 66, 318–325.CrossRefGoogle Scholar
  58. Luykx, D., Peters, R. J. B., van Ruth, S. M., & Bouwmeester, H. (2008). A review of analytical methods for the identification and characterization of nano delivery systems in food. Journal of Agricultural and Food Chemistry, 56(18), 8231–8247.PubMedCrossRefGoogle Scholar
  59. Macfarlane, S., Macfarlane, G. T., & Cummings, J. H. (2006). Prebiotic in the gastrointestinal tract. Alimentary Pharmacology and Therapeutics, 24(5), 701–714.PubMedCrossRefGoogle Scholar
  60. Macierzanka, A., Mackie, A. R., Bajka, B. H., Rigby, N. M., Nau, F., & Dupont, D. (2014). Transport of particles in intestinal mucus under simulated infant and adult physiological conditions: Impact of mucus structure and extracellular DNA. PLoS One, 9(4), e95274.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Mandalari, G., Mackie, A. M., Rigby, N. M., Wickham, M. S. J., & Mills, E. N. C. (2009). Physiological phosphatidylcholine protects bovine beta-lactoglobulin from simulated gastrointestinal proteolysis. Molecular Nutrition and Food Research, 53(Suppl. 1), S131–S139.PubMedCrossRefGoogle Scholar
  62. Marcolini, E., Babini, E., Bordoni, A., Di Nunzio, M., Laghi, L., Maczó, A., et al. (2015). Bioaccessibility of the bioactive peptide carnosine during in vitro digestion of cured beef meat. Journal of Agricultural and Food Chemistry, 63(20), 4973–4978.PubMedCrossRefGoogle Scholar
  63. Marze, S. (2015a). Bioaccessibility of lipophilic micro-constituents from a lipid emulsion. Food and Function, 6(10), 3218–3227.PubMedCrossRefGoogle Scholar
  64. Marze, S. (2015b). Refining in silico simulation to study digestion parameters affecting the bioaccessibility of lipophilic nutrients and micronutrients. Food and Function, 6(1), 114–123.CrossRefGoogle Scholar
  65. Marze, S. (2017). Bioavailability of nutrients and micronutrients: Advances in modeling and in vitro approaches. Annual Review of Food Science and Technology, 8(1), 35–55.PubMedCrossRefPubMedCentralGoogle Scholar
  66. Marze, S., & Choimet, M. (2012). In vitro digestion of emulsions: Mechanistic and experimental models. Soft Matter, 8(42), 10982.CrossRefGoogle Scholar
  67. Matalanis, A., Jones, O. G., & McClements, D. J. (2011). Structured biopolymer-based delivery systems for encapsulation, protection, and release of lipophilic compounds. Food Hydrocolloids, 25(8), 1865–1880.CrossRefGoogle Scholar
  68. Matalanis, A., Lesmes, U., Decker, E. A., & McClements, D. J. (2010). Fabrication and characterization of filled hydrogel particles based on sequential segregative and aggregative biopolymer phase separation. Food Hydrocolloids, 24(8), 689–701.CrossRefGoogle Scholar
  69. McClements, D. J. (2010). Emulsion design to improve the delivery of functional lipophilic components. Annual Review of Food Science and Technology, 1, 241–269.PubMedCrossRefGoogle Scholar
  70. McClements, D. J., Decker, E. A., Park, Y., & Weiss, J. (2008). Designing food structure to control stability, digestion, release and absorption of lipophilic food components. Food Biophysics, 3(2), 219–228.CrossRefGoogle Scholar
  71. McClements, D. J., & Li, Y. (2010). Structured emulsion-based delivery systems: Controlling the digestion and release of lipophilic food components. Advances in Colloid and Interface Science, 159(2), 213–228.PubMedCrossRefGoogle Scholar
  72. Meshulam, D., Slavuter, J., & Lesmes, U. (2014). Behavior of emulsions stabilized by a hydrophobically modified inulin under bio-relevant conditions of the human gastro-intestine. Food Biophysics, 9(4), 416–423.CrossRefGoogle Scholar
  73. Michel, C., & Macfarlane, G. T. (1996). Digestive fates of soluble polysaccharides from marine macroalgae: Involvement of the colonic microflora and physiological consequences for the host. The Journal of Applied Bacteriology, 80(4), 349–369.PubMedCrossRefGoogle Scholar
  74. Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., et al. (2014). A standardised static in vitro digestion method suitable for food—An international consensus. Food and Function, 5(5), 1113–1124.CrossRefPubMedPubMedCentralGoogle Scholar
  75. Moayedzadeh, S., Madadlou, A., & Khosrowshahi asl, A. (2015). Formation mechanisms, handling and digestibility of food protein nanofibrils. Trends in Food Science and Technology, 45(1), 50–59.CrossRefGoogle Scholar
  76. Monti, L., Negri, S., Meucci, A., Stroppa, A., Galli, A., & Contarini, G. (2017). Lactose, galactose and glucose determination in naturally “lactose free” hard cheese: HPAEC-PAD method validation. Food Chemistry, 220, 18–24.PubMedCrossRefGoogle Scholar
  77. Moon, J. K., & Shibamoto, T. (2009). Antioxidant assays for plant and food components. Journal of Agricultural and Food Chemistry, 57(5), 1655–1666.PubMedCrossRefGoogle Scholar
  78. Moreno, F. J. (2007). Gastrointestinal digestion of food allergens: Effect on their allergenicity. Biomedicine and Pharmacotherapy, 61(1), 50–60.PubMedCrossRefGoogle Scholar
  79. Moscovici, A. M., Joubran, Y., Briard-Bion, V., Mackie, A., Dupont, D., & Lesmes, U. (2014). The impact of the Maillard reaction on the in vitro proteolytic breakdown of bovine lactoferrin in adults and infants. Food and Function, 5(8), 1898.PubMedCrossRefGoogle Scholar
  80. O’Hara, A. M., & Shanahan, F. (2006). The gut flora as a forgotten organ. EMBO Reports, 7(7), 688–693.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Obiro, W. C., Sinha Ray, S., & Emmambux, M. N. (2012). V-amylose structural characteristics, methods of preparation, significance, and potential applications. Food Review International, 28(4), 412–438.CrossRefGoogle Scholar
  82. Oliver, N. S., Toumazou, C., Cass, A. E. G., & Johnston, D. G. (2009). Glucose sensors: A review of current and emerging technology. Diabetic Medicine, 26(3), 197–210.PubMedCrossRefGoogle Scholar
  83. Payne, A. N., Zihler, A., Chassard, C., & Lacroix, C. (2012). Advances and perspectives in in vitro human gut fermentation modeling. Trends in Biotechnology, 30(1), 17–25.PubMedCrossRefGoogle Scholar
  84. Rahaman, T., Vasiljevic, T., & Ramchandran, L. (2016). Effect of processing on conformational changes of food proteins related to allergenicity. Trends in Food Science and Technology, 49, 24–34.CrossRefGoogle Scholar
  85. Rastall, R. A. (2010). Functional oligosaccharides: Application and manufacture. Annual Review of Food Science and Technology, 1, 305–339.PubMedCrossRefGoogle Scholar
  86. Reboul, E., Richelle, M., Perrot, E., Desmoulins-Malezet, C., Pirisi, V., & Borel, P. (2006). Bioaccessibility of carotenoids and vitamin E from their main dietary sources. Journal of Agricultural and Food Chemistry, 54(23), 8749–8755.PubMedCrossRefGoogle Scholar
  87. Rémond, D., Shahar, D. R., Gille, D., Pinto, P., Kachal, J., Peyron, M.-A., et al. (2015). Understanding the gastrointestinal tract of the elderly to develop dietary solutions that prevent malnutrition. Oncotarget, 6(17), 13858–13898.PubMedPubMedCentralGoogle Scholar
  88. Roberfroid, M. (2007). Prebiotics: The concept revisited. The Journal of Nutrition, 137(3 Suppl 2), 830S–837S.PubMedCrossRefGoogle Scholar
  89. Ruiz-Rodriguez, P. E., Meshulam, D., & Lesmes, U. (2014). Characterization of Pickering O/W emulsions stabilized by silica nanoparticles and their responsiveness to in vitro digestion conditions. Food Biophysics, 9(4), 406–415.CrossRefGoogle Scholar
  90. Sams, L., Paume, J., Giallo, J., & Carrière, F. (2016). Relevant pH and lipase for in vitro models of gastric digestion. Food and Function, 7(1), 30–45.PubMedCrossRefGoogle Scholar
  91. Sassene, P. J., Fanø, M., Mu, H., Rades, T., Aquistapace, S., Schmitt, B., et al. (2016). Comparison of lipases for in vitro models of gastric digestion: Lipolysis using two infant formulas as model substrates. Food and Function, 7(9), 3989–3998.PubMedCrossRefGoogle Scholar
  92. Schweiggert, R. M., Kopec, R. E., Villalobos-Gutierrez, M. G., Högel, J., Quesada, S., Esquivel, P., et al. (2014). Carotenoids are more bioavailable from papaya than from tomato and carrot in humans: a randomised cross-over study. The British Journal of Nutrition, 111(3), 490–498.PubMedCrossRefGoogle Scholar
  93. Shani Levi, C., Goldstein, N., Portmann, R., & Lesmes, U. (2017). Emulsion and protein degradation in the elderly: Qualitative insights from a study coupling a dynamic in vitro digestion model with proteomic analyses. Food Hydrocolloids, 69, 393–401.CrossRefGoogle Scholar
  94. Shani-Levi, C., Levi-Tal, S., & Lesmes, U. (2013). Comparative performance of milk proteins and their emulsions under dynamic in vitro adult and infant gastric digestion. Food Hydrocolloids, 32(2), 349–357.CrossRefGoogle Scholar
  95. shimoni, G., Shani Levi, C., & Levi Tal, S. L. U. (May 2016). Emulsions stabilization by lactoferrin nano-particles under in vitro digestion conditions digestion conditions. Food Hydrocolloids, 2013(33), 264–272.Google Scholar
  96. Singh, H., & Ye, A. (2013). Structural and biochemical factors affecting the digestion of protein-stabilized emulsions. Current Opinion in Colloid and Interface Science, 18(4), 360–370.CrossRefGoogle Scholar
  97. Singh, H., Ye, A., & Horne, D. (2009). Structuring food emulsions in the gastrointestinal tract to modify lipid digestion. Progress in Lipid Research, 48(2), 92–100.CrossRefGoogle Scholar
  98. Skinner, W. S., Phinney, B. S., Herren, A., Goodstal, F. J., Dicely, I., & Facciotti, D. (2016). Using LC-MS based methods for testing the digestibility of a nonpurified transgenic membrane protein in simulated gastric fluid. Journal of Agricultural and Food Chemistry, 64(25), 5251–5259.PubMedCrossRefGoogle Scholar
  99. Tamvakopoulos, C. (2007). Mass spectrometry for the quantification of bioactive peptides in biological fluids. Mass Spectrometry Reviews, 26(3), 389–402.PubMedCrossRefGoogle Scholar
  100. Tharakan, A., Norton, I. T., Fryer, P. J., & Bakalis, S. (2010). Mass transfer and nutrient absorption in a simulated model of small intestine. Journal of Food Science, 75(6), E339–E346.PubMedPubMedCentralCrossRefGoogle Scholar
  101. Torres, D. P. M., Gonçalves, M. P. F., Teixeira, J. A., & Rodrigues, L. R. (2010). Galacto-oligosaccharides: Production, properties, applications, and significance as prebiotics. Comprehensive Reviews in Food Science and Food Safety, 9(5), 438–454.CrossRefGoogle Scholar
  102. Van Loo, J., Cummings, J., Delzenne, N., Englyst, H., Franck, A., Hopkins, M., et al. (1999). Functional food properties of non-digestible oligosaccharides: A consensus report from the ENDO project (DGXII AIRII-CT94-1095). The British Journal of Nutrition, 81(2), 121–132.PubMedCrossRefGoogle Scholar
  103. Verhoeckx, K. C. M., Vissers, Y. M., Baumert, J. L., Faludi, R., Feys, M., Flanagan, S., et al. (2015). Food processing and allergenicity. Food and Chemical Toxicology, 80, 223–240.PubMedCrossRefGoogle Scholar
  104. Vidal, N. P., Picone, G., Goicoechea, E., Laghi, L., Manzanos, M. J., Danesi, F., et al. (2016). Metabolite release and protein hydrolysis during the in vitro digestion of cooked sea bass fillets. A study by 1H NMR. Food Research International, 88, 293–301.CrossRefGoogle Scholar
  105. Vimaleswaran, K. S., Le Roy, C. I., & Claus, S. P. (2015). Foodomics for personalized nutrition: How far are we? Current Opinion in Food Science, 4, 129–135.CrossRefGoogle Scholar
  106. Vingerhoeds, M. H., Silletti, E., de Groot, J., Schipper, R. G., & van Aken, G. A. (2009). Relating the effect of saliva-induced emulsion flocculation on rheological properties and retention on the tongue surface with sensory perception. Food Hydrocolloids, 23(3), 773–785.CrossRefGoogle Scholar
  107. Vors, C., Capolino, P., Guérin, C., Meugnier, E., Pesenti, S., Chauvin, M.-A., et al. (2012). Coupling in vitro gastrointestinal lipolysis and Caco-2 cell cultures for testing the absorption of different food emulsions. Food and Function, 3(5), 537.PubMedCrossRefGoogle Scholar
  108. Wada, Y., & Lönnerdal, B. (2015). Bioactive peptides released from in vitro digestion of human milk with or without pasteurization. Pediatric Research, 77(4), 546–553.PubMedCrossRefGoogle Scholar
  109. Wilde, P. J., & Chu, B. S. (2011). Interfacial & colloidal aspects of lipid digestion. Advances in Colloid and Interface Science, 165(1), 14–22.PubMedCrossRefGoogle Scholar
  110. Ye, A., Cui, J., Dalgleish, D., & Singh, H. (2016). The formation and breakdown of structured clots from whole milk during gastric digestion. Food and Function, 7(10), 4259–4266.CrossRefGoogle Scholar
  111. Ye, A., Cui, J., Dalgleish, D., & Singh, H. (2017). Effect of homogenization and heat treatment on the behavior of protein and fat globules during gastric digestion of milk. Journal of Dairy Science, 100(1), 36–47.PubMedCrossRefGoogle Scholar
  112. Zabar, S., Lesmes, U., Katz, I., Shimoni, E., & Bianco-Peled, H. (2009). Studying different dimensions of amylose-long chain fatty acid complexes: Molecular, nano and micro level characteristics. Food Hydrocolloids, 23(7), 1918–1925.CrossRefGoogle Scholar
  113. Zabar, S., Lesmes, U., Katz, I., Shimoni, E., & Bianco-Peled, H. (2010). Structural characterization of amylose-long chain fatty acid complexes produced via the acidification method. Food Hydrocolloids, 24(4), 347–357.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Biotechnology and Food EngineeringTechnionHaifaIsrael

Personalised recommendations