Advertisement

Tools and Methods to Quantify the Digestion of Protein, Lipid, Starch and Fibre from a Chemistry/Microbiology Perspective

  • Carlos A. MontoyaEmail author
  • Suzanne Hodgkinson
  • Paul J. Moughan
Chapter

Abstract

Many in vivo, in vitro and combined in vivo–in vitro methodologies have been developed to study the mechanisms involved and sites of nutrient digestion and absorption in the gastrointestinal tract. Moreover, different approaches within each of these methodologies have also been developed. Some of the methodologies/approaches can be applied to multiple nutrients, while other methodologies are specific to certain nutrients. There are advantages and disadvantages to the use of each methodology and understanding these is crucial to avoid misleading interpretation and conclusions. To select an approach to determine digestion and/or absorption, it is important to consider (1) the nutrient that will be studied, (2) the strengths and weaknesses of the different approaches, (3) the aim of the study and (4) the resources available to conduct the study. This chapter provides an overview of the tools and methods developed to study the digestion of protein, starch, lipids, and fibre. Given that the development of methods to study the digestion of dietary fibre is ongoing, this nutrient is discussed in more detail.

Keywords

Absorption Digestion Gastrointestinal tract In vivo and in vitro methodologies Nutrients 

References

  1. Abad-Guamán, R., Carabaño, R., Gómez-Conde, M. S., & García, J. (2015). Effect of type of fiber, site of fermentation, and method of analysis on digestibility of soluble and insoluble fiber in rabbits. Journal of Animal Science, 93, 2860–2871.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Aguirre, M., Ramiro-Garcia, J., Koenen, M. E., & Venema, K. (2014). To pool or not to pool? Impact of the use of individual and pooled fecal samples for in vitro fermentation studies. Journal of Microbiological Methods, 107, 1–7.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Alander, M., De Smet, I., Nollet, L., Verstraete, W., von Wright, A., & Mattila-Sandholm, T. (1999). The effect of probiotic strains on the microbiota of the simulator of the human intestinal microbial ecosystem (SHIME). International Journal of Food Microbiology, 46, 71–79.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Alimentarius. CODEX. (2013). (CODEX) guidelines on nutrition labeling CAC/GL 2–1985 as last amended 2013. Joint FAO/WHO Food Standards Programme, Secretariat of the CODEX Alimentarius Commission. Rome: FAO.Google Scholar
  5. Antunes, F., Andrade, F., Ferreira, D., Nielsen, H. M., & Sarmento, B. (2013). Models to predict intestinal absorption of therapeutic peptides and proteins. Current Drug Metabolism, 14, 4–20.PubMedCrossRefPubMedCentralGoogle Scholar
  6. Awati, A., Williams, B. A., Bosch, M. W., & Verstegen, M. W. A. (2006). Dietary carbohydrates with different rates of fermentation affect fermentation end-product profiles in different sites of gastro-intestinal tract of weaning piglet. Animal Science, 82, 837–843.CrossRefGoogle Scholar
  7. Baer, D. J., Rumpler, W. V., Miles, C. W., & Fahey Jr., G. C. (1997). Dietary fiber decreases the metabolizable energy content and nutrient digestibility of mixed diets fed to humans. The Journal of Nutrition, 127, 579–586.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Bauer, E., Jakob, S., & Mosenthin, R. (2005). Principles of physiology of lipid digestion. Asian-Australasian Journal of Animal Sciences, 18, 282–295.CrossRefGoogle Scholar
  9. Beisson, F., Tiss, A., Rivière, C., & Verger, R. (2000). Methods for lipase detection and assay: A critical review. European Journal of Lipid Science and Technology, 102, 133–153.CrossRefGoogle Scholar
  10. Bergeim, O. (1926). Intestinal chemistry: iii. Salivary digestion in the human stomach and intestines. Archives of Internal Medicine, 37, 110–117.CrossRefGoogle Scholar
  11. Bergman, E. N. (1990). Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiological Reviews, 70, 567–590.PubMedCrossRefPubMedCentralGoogle Scholar
  12. Bik, E. M., Eckburg, P. B., Gill, S. R., Nelson, K. E., Purdom, E. A., Francois, F., et al. (2006). Molecular analysis of the bacterial microbiota in the human stomach. Proceedings of the National Academy of Sciences of the United States of America, 103, 732–737.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bindelle, J., Buldgen, A., Boudry, C., & Leterme, P. (2007). Effect of inoculum and pepsin–pancreatin hydrolysis on fibre fermentation measured by the gas production technique in pigs. Animal Feed Science and Technology, 132, 111–122.CrossRefGoogle Scholar
  14. Bindelle, J., Pieper, R., Montoya, C. A., Van Kessel, A. G., & Leterme, P. (2011). Nonstarch polysaccharide-degrading enzymes alter the microbial community and the fermentation patterns of barley cultivars and wheat products in an in vitro model of the porcine gastrointestinal tract. FEMS Microbiology Ecology, 76, 553–563.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Boisen, S., & Fernández, J. A. (1997). Prediction of the total tract digestibility of energy in feedstuffs and pig diets by in vitro analyses. Animal Feed Science and Technology, 68, 277–286.CrossRefGoogle Scholar
  16. Booijink, C. C. G. M., El-Aidy, S., Rajilić-Stojanović, M., Heilig, H. G., Troost, F. J., Smidt, H., et al. (2010). High temporal and inter-individual variation detected in the human ileal microbiota. Environmental Microbiology, 12, 3213–3227.PubMedCrossRefPubMedCentralGoogle Scholar
  17. Borgström, B., Dahlqvist, A., Lundh, G., & Sjövall, J. (1957). Studies of intestinal digestion and absorption in the human. The Journal of Clinical Investigation, 36, 1521–1536.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Bornhorst, G. M., Drechsler, K. C., Montoya, C. A., Rutherfurd, S. M., Moughan, P. J., & Singh, R. P. (2016). Gastric protein hydrolysis of raw and roasted almonds in the growing pig. Food Chemistry, 211, 502–508.PubMedCrossRefPubMedCentralGoogle Scholar
  19. Bos, C., Airinei, G., Mariotti, F., Benamouzig, R., Bérot, S., Evrard, J., et al. (2007). The poor digestibility of rapeseed protein is balanced by its very high metabolic utilization in humans. The Journal of Nutrition, 137, 594–600.PubMedCrossRefPubMedCentralGoogle Scholar
  20. Bouchoucha, M., Devroede, G., Bon, C., Raynaud, J. J., Bejou, B., & Benamouzig, R. (2015). How many segments are necessary to characterize delayed colonic transit time? International Journal of Colorectal Disease, 30, 1381–1389.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Butts, C. A., Monro, J. A., & Moughan, P. J. (2012). In vitro determination of dietary protein and amino acid digestibility for humans. The British Journal of Nutrition, 108, S282–S287.PubMedCrossRefPubMedCentralGoogle Scholar
  22. Cabotaje, L. M., Shinnick, F. L., Lopéz-Guisa, J. M., & Marlett, J. A. (1994). Mucin secretion in germfree rats fed fiber-free and psyllium diets and bacterial mass and carbohydrate fermentation after colonization. Applied and Environmental Microbiology, 60, 1302–1307.PubMedPubMedCentralGoogle Scholar
  23. Cecchini, D. A., Laville, E., Laguerre, S., Robe, P., Leclerc, M., Doré, J., et al. (2013). Functional metagenomics reveals novel pathways of prebiotic breakdown by human gut bacteria. PLoS One, 8, e72766.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Christensen, D. N., Knudsen, K. E. B., Wolstrup, J., & Jensen, B. B. (1999). Integration of ileum cannulated pigs and in vitro fermentation to quantify the effect of diet composition on the amount of short-chain fatty acids available from fermentation in the large intestine. Journal of the Science of Food and Agriculture, 79, 755–762.CrossRefGoogle Scholar
  25. Coles, L. T., Moughan, P. J., Awati, A., & Darragh, A. J. (2013a). Validation of a dual in vivo–in vitro assay for predicting the digestibility of nutrients in humans. Journal of the Science of Food and Agriculture, 93, 2637–2645.PubMedCrossRefPubMedCentralGoogle Scholar
  26. Coles, L. T., Moughan, P. J., Awati, A., & Darragh, A. J. (2013b). Optimisation of inoculum concentration and incubation duration for an in vitro hindgut dry matter digestibility assay. Food Chemistry, 136, 624–631.PubMedCrossRefPubMedCentralGoogle Scholar
  27. Coles, L. T., Moughan, P. J., & Darragh, A. J. (2005). In vitro digestion and fermentation methods, including gas production techniques, as applied to nutritive evaluation of foods in the hindgut of humans and other simple-stomached animals. Animal Feed Science and Technology, 123–124(Part 1), 421–444.CrossRefGoogle Scholar
  28. Cummings, J. H., & Englyst, H. N. (1987). Fermentation in the human large intestine and the available substrates. The American Journal of Clinical Nutrition, 45, 1243–1255.PubMedCrossRefPubMedCentralGoogle Scholar
  29. Cummings, J. H., & Macfarlane, G. T. (1991). The control and consequences of bacterial fermentation in the human colon. The Journal of Applied Bacteriology, 70, 443–459.PubMedCrossRefPubMedCentralGoogle Scholar
  30. Da Costa, L. R. (1971). Protein loss from the normal human small intestinal mucosa. The Journal of Nutrition, 101, 431–435.PubMedCrossRefGoogle Scholar
  31. Danjo, K., Nakaji, S., Fukuda, S., Shimoyama, T., Sakamoto, J., & Sugawara, K. (2003). The resistant starch level of heat moisture–treated high amylose cornstarch is much lower when measured in the human terminal ileum than when estimated in vitro. The Journal of Nutrition, 133, 2218–2221.PubMedCrossRefGoogle Scholar
  32. Darragh, A. J., Cranwell, P. D., & Moughan, P. J. (1994). Absorption of lysine and methionine from the proximal colon of the piglet. The British Journal of Nutrition, 71, 739–752.PubMedCrossRefGoogle Scholar
  33. Dawes, C., Pedersen, A. M. L., Villa, A., Ekström, J., Proctor, G. B., Vissink, A., et al. (2015). The functions of human saliva: A review sponsored by the World Workshop on Oral Medicine VI. Archives of Oral Biology, 60, 863–874.PubMedCrossRefGoogle Scholar
  34. de Lange, C. F. M., Souffrant, W. B., & Sauer, W. C. (1990). Real ileal protein and amino acid digestibilities in feedstuffs for growing pigs as determined with the 15N-isotope dilution technique. Journal of Animal Science, 68, 409–418.PubMedCrossRefGoogle Scholar
  35. Deglaire, A., Bos, C., Tome, D., & Moughan, P. J. (2009). Ileal digestibility of dietary protein in the growing pig and adult human. The British Journal of Nutrition, 102, 1752–1759.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Deglaire, A., & Moughan, P. J. (2012). Animal models for determining amino acid digestibility in humans – A review. The British Journal of Nutrition, 108, S273–S281.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Deglaire, A., Moughan, P. J., Rutherfurd, S. M., Bos, C., & Tome, D. (2007). Feeding dietary peptides to growing rats enhances gut endogenous protein flows compared with feeding protein-free or free amino acid-based diets. The Journal of Nutrition, 137, 2431–2436.PubMedCrossRefGoogle Scholar
  38. DeSesso, J. M., & Jacobson, C. F. (2001). Anatomical and physiological parameters affecting gastrointestinal absorption in humans and rats. Food and Chemical Toxicology, 39, 209–228.PubMedCrossRefGoogle Scholar
  39. DeSesso, J. M., & Williams, A. L. (2008). Contrasting the gastrointestinal tracts of mammals: Factors that influence absorption. In E. M. John (Ed.), Annual reports in medicinal chemistry (Vol. 43, pp. 353–371). London: Academic.Google Scholar
  40. Donkoh, A., Moughan, P. J., & Morel, P. C. H. (1995). Comparison of methods to determine the endogenous amino acid flow at the terminal ileum of the growing rat. Journal of the Science of Food and Agriculture, 67, 359–366.CrossRefGoogle Scholar
  41. Englyst, H. N., & Cummings, J. H. (1985). Digestion of the polysaccharides of some cereal foods in the human small intestine. The American Journal of Clinical Nutrition, 42, 778–787.PubMedCrossRefPubMedCentralGoogle Scholar
  42. Englyst, H. N., & Cummings, J. H. (1986). Digestion of the carbohydrates of banana (Musa paradisiaca sapientum) in the human small intestine. The American Journal of Clinical Nutrition, 44, 42–50.PubMedCrossRefPubMedCentralGoogle Scholar
  43. Englyst, H. N., & Cummings, J. H. (1987). Digestion of polysaccharides of potato in the small intestine of man. The American Journal of Clinical Nutrition, 45, 423–431.PubMedCrossRefPubMedCentralGoogle Scholar
  44. Farrell, D. J., & Johnson, K. A. (1970). Utilization of cellulose by pigs and its effects on caecal function. Animal Production, 14, 209–217.CrossRefGoogle Scholar
  45. Fauconneau, G., & Michel, M. C. (1970). The role of the gastrointestinal tract in the regulation of protein metabolism. In H. N. Munro (Ed.), Mammalian protein metabolism (Vol. IV, pp. 481–522). London: Academic.CrossRefGoogle Scholar
  46. Flint, H. J., Scott, K. P., Duncan, S. H., Louis, P., & Forano, E. (2012). Microbial degradation of complex carbohydrates in the gut. Gut Microbes, 3, 289–306.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Food and Agriculture Organization of the United Nations (FAO). (2013). Dietary protein quality evaluation in human nutrition (Report of an FAO Exert Consultation). Rome: FAO.Google Scholar
  48. Food and Agriculture Organization of the United Nations (FAO). (2014). Research approaches and methods for evaluating the protein quality of human foods (Report of a FAO Working Group). Rome: FAO.Google Scholar
  49. Forsum, E., Eriksson, C., Göranzon, H., & Sohlström, A. (1990). Composition of faeces from human subjects consuming diets based on conventional foods containing different kinds and amounts of dietary fibre. The British Journal of Nutrition, 64, 171–186.PubMedCrossRefGoogle Scholar
  50. Frank, D. N., St. Amand, A. L., Feldman, R. A., Boedeker, E. C., Harpaz, N., & Pace, N. R. (2007). Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proceedings of the National Academy of Sciences of the United States of America, 104, 13780–13785.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Gausserès, N., Mahé, S., Benamouzig, R., Luengo, C., Drouet, H., Rautureau, J., et al. (1996). The gastro-ileal digestion of N-labelled pea nitrogen in adult humans. The British Journal of Nutrition, 76, 75–85.PubMedCrossRefPubMedCentralGoogle Scholar
  52. Goverse, G., Molenaar, R., Macia, L., Tan, J., Erkelens, M. N., Konijn, T., et al. (2017). Diet-derived short chain fatty acids stimulate intestinal epithelial cells to induce mucosal tolerogenic dendritic cells. Journal of Immunology, 198, 2172–2181.CrossRefGoogle Scholar
  53. Graham, H., & Åman, P. (1987). The pig as a model in dietary fibre digestion studies. Scandinavian Journal of Gastroenterology, 22, 55–61.CrossRefGoogle Scholar
  54. Green, S., Bertrand, S. L., Duron, M. J. C., & Maillard, R. A. (1987). Digestibility of amino acids in maize, wheat and barley meal, measured in pigs with ileo-rectal anastomosis and isolation of the large intestine. Journal of the Science of Food and Agriculture, 41, 29–43.CrossRefGoogle Scholar
  55. Gregory, P. C., McFadyen, M., & Rayner, D. V. (1990). Pattern of gastric emptying in the pig: Relation to feeding. The British Journal of Nutrition, 64, 45–58.PubMedCrossRefPubMedCentralGoogle Scholar
  56. Gu, S., Chen, D., Zhang, J.-N., Lv, X., Wang, K., Duan, L. P., et al. (2013). Bacterial community mapping of the mouse gastrointestinal tract. PLoS One, 8, e74957.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Guilloteau, P., Martin, L., Eeckhaut, V., Ducatelle, R., Zabielski, R., & Van Immerseel, F. (2010). From the gut to the peripheral tissues: The multiple effects of butyrate. Nutrition Research Reviews, 23, 366–384.PubMedCrossRefPubMedCentralGoogle Scholar
  58. Guinane, C. M., & Cotter, P. D. (2013). Role of the gut microbiota in health and chronic gastrointestinal disease: Understanding a hidden metabolic organ. Therapeutic Advances in Gastroenterology, 6, 295–308.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Heinritz, S. N., Mosenthin, R., & Weiss, E. (2013). Use of pigs as a potential model for research into dietary modulation of the human gut microbiota. Nutrition Research Reviews, 26, 191–209.PubMedCrossRefPubMedCentralGoogle Scholar
  60. Hendriks, W. H., Butts, C. A., Thomas, D. V., James, K. A. C., Morel, P. C. A., & Verstegen, M. W. A. (2002). Nutritional quality and variation of meat and bone meal. Asian-Australasian Journal of Animal Science, 15, 1507–1516.CrossRefGoogle Scholar
  61. Hendriks, W. H., Cottam, Y. H., Morel, P. C. H., & Thomas, D. V. (2004). Source of the variation in meat and bone meal nutritional quality. Asian-Australasian Journal of Animal Science, 17, 94–101.CrossRefGoogle Scholar
  62. Hendriks, W. H., van Baal, J., & Bosch, G. (2012). Ileal and faecal protein digestibility measurement in humans and other non-ruminants – A comparative species view. The British Journal of Nutrition, 108, S247–S257.PubMedCrossRefPubMedCentralGoogle Scholar
  63. Hodgkinson, S. M., & Moughan, P. J. (2007). An effect of dietary protein content on endogenous ileal lysine flow in the growing rat. Journal of the Science of Food and Agriculture, 87, 233–238.CrossRefGoogle Scholar
  64. Hodgkinson, S. M., Moughan, P. J., Reynolds, G. W., & James, K. A. C. (2000). Effect of dietary peptide concentration on endogenous ileal amino acid loss in the growing pig. The British Journal of Nutrition, 84, 421–430.Google Scholar
  65. Hofmann, A. F., & Borgström, B. (1964). The intraluminal phase of fat digestion in man: The lipid content of the micellar and oil phases of intestinal content obtained during fat digestion and absorption. The Journal of Clinical Investigation, 43, 247–257.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Højberg, O., Canibe, N., Knudsen, B., & Jensen, B. B. (2003). Potential rates of fermentation in digesta from the gastrointestinal tract of pigs: Effect of feeding fermented liquid feed. Applied and Environmental Microbiology, 69, 408–418.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Holloway, W. D., Tasman-Jones, C., & Lee, S. P. (1978). Digestion of certain fractions of dietary fiber in humans. The American Journal of Clinical Nutrition, 31, 927–930.PubMedCrossRefPubMedCentralGoogle Scholar
  68. Holloway, W. D., Tasman-Jones, C., & Maher, K. (1983). Pectin digestion in humans. The American Journal of Clinical Nutrition, 37, 253–255.PubMedCrossRefPubMedCentralGoogle Scholar
  69. Holtug, K., Rasmussen, H. S., & Mortensen, P. B. (1992). An in vitro study of short-chain fatty acid concentrations, production and absorption in pig (Sus scrofa) colon. Comparative Biochemistry and Physiology. A: Physiology, 103, 189–197.PubMedCrossRefPubMedCentralGoogle Scholar
  70. Huang, G., Sauer, W. C., He, J., Hwangbo, J., & Wang, X. (2003). The nutritive value of hulled and hulless barley for growing pigs. 1. Determination of energy and protein digestibility with the in vivo and in vitro method. Journal of Animal and Feed Sciences, 12, 759–769.CrossRefGoogle Scholar
  71. Huisman, J., Heinz, T. H., van der Poel, A. F. B., van Leeuwen, P., Souffrant, W. B., & Verstegen, M. W. A. (1992). True protein digestibility and amounts of endogenous protein measured with the 15N-dilution technique in piglets fed on peas (Pisum sativum) and common beans (Phaseolus vulgaris). The British Journal of Nutrition, 68, 101–110.PubMedCrossRefPubMedCentralGoogle Scholar
  72. Hurrell, R. F., & Carpenter, K. J. (1981). The estimation of available lysine in feedstuffs after Maillard reactions. In L. Eriksson (Ed.), Progress in food and nutritional science. Maillard reactions in food (Vol. Vol. 5, No. 1–6). Oxford: Pergamon.Google Scholar
  73. Ito, H., Satsukawa, M., Arai, E., Sugiyama, K., Sonoyama, K., Kiriyama, S., et al. (2009). Soluble fiber viscosity affects both goblet cell number and small intestine mucin secretion in rats. The Journal of Nutrition, 139, 1640–1647.PubMedCrossRefPubMedCentralGoogle Scholar
  74. Ivan, M. (1974). A new type of re-entrant cannula designed for use in the small intestine of the pig. Australian Veterinary Journal, 50, 547–552.PubMedCrossRefPubMedCentralGoogle Scholar
  75. Ivy, A. C., Schmidt, C. R., & Beazell, J. M. (1936). On the effectiveness of malt amylase on the gastric digestion of starches. The Journal of Nutrition, 12, 59–83.CrossRefGoogle Scholar
  76. Jagger, S., Wiseman, J., Cole, D. J. A., & Craigon, J. (1992). Evaluation of inert markers for the determination of ileal and faecal apparent digestibility values in the pig. The British Journal of Nutrition, 68, 729–739.PubMedCrossRefPubMedCentralGoogle Scholar
  77. Jorgensen, H., Gabert, V. M., Hedemann, M. S., & Jensen, S. K. (2000). Digestion of fat does not differ in growing pigs fed diets containing fish oil, rapeseed oil or coconut oil. The Journal of Nutrition, 130, 852–857.PubMedCrossRefPubMedCentralGoogle Scholar
  78. Just, A. (1983). The role of the large intestine in the digestion of nutrients and amino acid utilisation in monogastrics. Paper presented at the proceedings of the IVth International Symposium on Protein Metabolism and Nutrition.Google Scholar
  79. Just, A., Jørgensen, H., & Fernández, J. A. (1981). The digestive capacity of the caecum-colon and the value of the nitrogen absorbed from the hind gut for protein synthesis in pigs. The British Journal of Nutrition, 46, 209–219.PubMedCrossRefPubMedCentralGoogle Scholar
  80. Kelly, J. R., Borre, Y., O’ Brien, C., Patterson, E., El Aidy, S., Deane, J., et al. (2016). Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. Journal of Psychiatric Research, 82, 109–118.PubMedCrossRefPubMedCentralGoogle Scholar
  81. Knudsen, K. E. B. (2001). The nutritional significance of “dietary fibre” analysis. Animal Feed Science and Technology, 90, 3–20.CrossRefGoogle Scholar
  82. Köhler, T., Huisman, J., Den Hartog, L. A., & Mosenthin, R. (1990). Comparison of different digesta collection methods to determine the apparent digestibilities of the nutrients at the terminal ileum in pigs. Journal of the Science of Food and Agriculture, 53, 465–475.CrossRefGoogle Scholar
  83. Kohler, T., Mosenthin, R., Verstegen, M. W., Huisman, J., den Hartog, L. A., & Ahrens, F. (1992). Effect of ileo-rectal anastomosis and post-valve T-caecum cannulation on growing pigs. 1. Growth performance, N-balance and intestinal adaptation. The British Journal of Nutrition, 68, 293–303.PubMedCrossRefPubMedCentralGoogle Scholar
  84. Krautkramer, K. A., Kreznar, J. H., Romano, K. A., Vivas, E. I., Barrett-Wilt, G. A., Rabaglia, M. E., et al. (2016). Diet-microbiota interactions mediate global epigenetic programming in multiple host tissues. Molecular Cell, 64, 982–992.PubMedPubMedCentralCrossRefGoogle Scholar
  85. Kurahashi, M., & Inomata, K. (1999). Effects of dietary consistency and water content on parotid amylase secretion and gastric starch digestion in rats. Archives of Oral Biology, 44, 1013–1019.PubMedCrossRefPubMedCentralGoogle Scholar
  86. Laerke, H. N., Jensen, B. B., & Hojsgaard, S. (2000). In vitro fermentation pattern of d-tagatose is affected by adaptation of the microbiota from the gastrointestinal tract of pigs. The Journal of Nutrition, 130, 1772–1779.PubMedCrossRefPubMedCentralGoogle Scholar
  87. Langille, M. G. I., Zaneveld, J., Caporaso, J. G., McDonald, D., Knights, D., Reyes, J. A., et al. (2013). Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnology, 31, 814–821.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Langkilde, A. M., Champ, M., & Andersson, H. (2002). Effects of high-resistant-starch banana flour (RS2) on in vitro fermentation and the small-bowel excretion of energy, nutrients, and sterols: An ileostomy study. The American Journal of Clinical Nutrition, 75, 104–111.PubMedCrossRefPubMedCentralGoogle Scholar
  89. Latymer, E. A., Low, A. G., Fadden, K., Sambrook, I. E., Woodley, S. C., & Keal, H. D. (1990). Measurement of transit time of digesta through sections of gastrointestinal tract of pigs fed with diets containing various sources of dietary fibre (non-starch polysaccharides). Archiv für Tierernaehrung, 40, 667–680.CrossRefGoogle Scholar
  90. Lefebvre, D. E., Venema, K., Gombau, L., Valerio Jr., L. G., Raju, J., Bondy, G. S., et al. (2015). Utility of models of the gastrointestinal tract for assessment of the digestion and absorption of engineered nanomaterials released from food matrices. Nanotoxicology, 9, 523–542.PubMedPubMedCentralCrossRefGoogle Scholar
  91. Leterme, P., Théwis, A., François, E., van Leeuwen, P., Wathelet, B., & Huisman, J. (1996). The use of 15N-labelled dietary proteins for determining true ileal amino acid digestibilities is limited by their rapid recycling in the endogenous secretions of pigs. The Journal of Nutrition, 126, 2188–2198.PubMedCrossRefPubMedCentralGoogle Scholar
  92. Levrat, M.-A., Behr, S. R., Rémésy, C., & Demigné, C. (1991). Effects of soybean fiber on cecal digestion in rats previously adapted to a fiber-free diet. The Journal of Nutrition, 121, 672–678.PubMedCrossRefPubMedCentralGoogle Scholar
  93. Lien, K. A., McBurney, M. I., Beyde, B. I., Thomson, A. B., & Sauer, W. C. (1996). Ileal recovery of nutrients and mucin in humans fed total enteral formulas supplemented with soy fiber. The American Journal of Clinical Nutrition, 63, 584–595.PubMedCrossRefPubMedCentralGoogle Scholar
  94. Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M., & Henrissat, B. (2014). The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Research, 42, D490–D495.PubMedCrossRefPubMedCentralGoogle Scholar
  95. Low, A. G. (1980). Nutrient absorption in pigs. Journal of the Science of Food and Agriculture, 31, 1087–1130.PubMedCrossRefPubMedCentralGoogle Scholar
  96. Macfarlane, G. T., Gibson, G. R., & Cummings, J. H. (1992). Comparison of fermentation reactions in different regions of the human colon. The Journal of Applied Bacteriology, 72, 57–64.PubMedPubMedCentralGoogle Scholar
  97. Mahe, M. M., Aihara, E., Schumacher, M. A., Zavros, Y., Montrose, M. H., Helmrath, M. A., et al. (2013). Establishment of gastrointestinal epithelial organoids. Current Protocols in Mouse Biology, 3, 217–240.PubMedPubMedCentralCrossRefGoogle Scholar
  98. Mahé, S., Huneau, J. F., Marteau, P., Thuillier, F., & Tomé, D. (1992). Gastroileal nitrogen and electrolyte movements after bovine milk ingestion in humans. The American Journal of Clinical Nutrition, 56, 410–416.PubMedCrossRefPubMedCentralGoogle Scholar
  99. Mason, V. C. (1980). Role of the large intestine in the processes of digestion and absorption in the pig. In A. G. Low & I. G. Partridge (Eds.), Current concepts of digestion and absorption in pigs (pp. 112–129). Reading: National Institute for Research in Dairying.Google Scholar
  100. McBurney, M. I., & Thompson, L. U. (1989). Dietary fiber and energy balance: Integration of the human ileostomy and in vitro fermentation models. Animal Feed Science and Technology, 23, 261–275.CrossRefGoogle Scholar
  101. McClements, D. J., & Yan, L. (2010). Review of in vitro digestion models for rapid screening of emulsion-based systems. Food & Function, 1, 32–59.CrossRefGoogle Scholar
  102. McNeil, N. I. (1984). The contribution of the large intestine to energy supplies in man. The American Journal of Clinical Nutrition, 39, 338–342.PubMedCrossRefPubMedCentralGoogle Scholar
  103. McNeil, N. I. (1988). Nutritional implication of human and mammalian large intestinal function. World Review of Nutrition and Dietetics, 56, 1–42.PubMedCrossRefPubMedCentralGoogle Scholar
  104. Miller, E. R., & Ullrey, D. E. (1987). The pig as a model for human nutrition. Annual Review of Nutrition, 7, 361–382.PubMedCrossRefPubMedCentralGoogle Scholar
  105. Millward, D. J., Garlick, P. J., James, W. P. T., Sender, P. M., & Waterlow, J. C. (1976). Protein turnover. In D. J. A. Cole, P. J. B. KNB, D. Lewis, R. J. Neale, & H. Swan (Eds.), Protein metabolism and nutrition (pp. 49–69). London: Butterworths.Google Scholar
  106. Miner-Williams, W., Deglaire, A., Benamouzig, R., Fuller, M. F., Tome, D., & Moughan, P. J. (2014). Endogenous proteins in the ileal digesta of adult humans given casein-, enzyme-hydrolyzed casein- or crystalline amino-acid-based diets in an acute feeding study. European Journal of Clinical Nutrition, 68, 363–369.PubMedCrossRefPubMedCentralGoogle Scholar
  107. Molly, K., Woestyne, M. V., & Smet, I. D. (2011). Validation of the simulator of the human intestinal microbial ecosystem (SHIME) reactor using microorganism-associated activities. Microbial Ecology in Health and Disease, 7, 191–200.CrossRefGoogle Scholar
  108. Monsma, D. J., Vollendorf, N. W., & Marlett, J. A. (1992). Determination of fermentable carbohydrate from the upper gastrointestinal tract by using colectomized rats. Applied and Environmental Microbiology, 58, 3330–3336.PubMedPubMedCentralGoogle Scholar
  109. Montoya, C. A., Gomez, A. S., Lallès, J.-P., Souffrant, W. B., Beebe, S., & Leterme, P. (2008). In vitro and in vivo protein hydrolysis of beans (Phaseolus vulgaris) genetically modified to express different phaseolin types. Food Chemistry, 106, 1225–1233.CrossRefGoogle Scholar
  110. Montoya, C. A., de Haas, E. S., Moughan, P. J. (2018). Development of an in vivo and in vitro ileal fermentation method in a growing pig model. Journal of Nutrition, 148, 298–305.PubMedCrossRefPubMedCentralGoogle Scholar
  111. Montoya, C. A., Henare, S. J., Rutherfurd, S. M., & Moughan, P. J. (2016). Potential misinterpretation of the nutritional value of dietary fiber: Correcting fiber digestibility values for nondietary gut-interfering material. Nutrition Reviews, 74, 517–533.PubMedCrossRefPubMedCentralGoogle Scholar
  112. Montoya, C. A., Hindmarsh, J. P., Gonzalez, L., Boland, M. J., Moughan, P. J., & Rutherfurd, S. M. (2014). Dietary actinidin from kiwifruit (Actinidia deliciosa cv. Hayward) increases gastric digestion and the gastric emptying rate of several dietary proteins in growing rats. The Journal of Nutrition, 144, 440–446.PubMedCrossRefPubMedCentralGoogle Scholar
  113. Montoya, C. A., & Leterme, P. (2009). Determination of the digestible energy and prediction of the net energy content of toasted and non-toasted canola meals from Brassica junceae and Brassica napus in growing pigs by the total faecal collection and the indigestible marker method. Canadian Journal of Animal Science, 89, 481–487.CrossRefGoogle Scholar
  114. Montoya, C. A., & Leterme, P. (2010). Validation of the net energy content of canola meal and full-fat canola seeds in growing pigs. Canadian Journal of Animal Science, 90, 213–219.CrossRefGoogle Scholar
  115. Montoya, C. A., & Leterme, P. (2011). Effect of particle size on the digestible energy content of field pea (Pisum sativum L.) in growing pigs. Animal Feed Science and Technology, 169, 113–120.CrossRefGoogle Scholar
  116. Montoya, C. A., & Leterme, P. (2012). Validation of an in vitro technique for determining ileal starch digestion of field peas (Pisum sativum) in pigs. Animal Feed Science and Technology, 177, 259–265.CrossRefGoogle Scholar
  117. Montoya, C. A., Leterme, P., Victoria, N. F., Toro, O., Souffrant, W. B., Beebe, S., et al. (2008). Susceptibility of phaseolin to in vitro proteolysis is highly variable across common bean varieties (Phaseolus vulgaris). Journal of Agricultural and Food Chemistry, 56, 2183–2191.PubMedCrossRefPubMedCentralGoogle Scholar
  118. Montoya, C. A., Rutherfurd, S. M., & Moughan, P. J. (2015). Nondietary gut materials interfere with the determination of dietary fiber digestibility in growing pigs when using the Prosky method. The Journal of Nutrition, 145, 1966–1972.PubMedCrossRefPubMedCentralGoogle Scholar
  119. Montoya, C. A., Rutherfurd, S. M., & Moughan, P. J. (2016). Kiwifruit fibre level influences the predicted production and absorption of SCFA in the hindgut of growing pigs using a combined in vivo–in vitro digestion methodology. The British Journal of Nutrition, 115, 1317–1324.PubMedCrossRefPubMedCentralGoogle Scholar
  120. Montoya, C. A., Rutherfurd, S. M., & Moughan, P. J. (2017). Ileal digesta nondietary substrates from cannulated pigs are major contributors to in vitro human hindgut short-chain fatty acid production. The Journal of Nutrition, 147, 264–271.PubMedCrossRefPubMedCentralGoogle Scholar
  121. Montoya, C. A., Rutherfurd, S. M., Olson, T. D., Purba, A. S., Drummond, L. N., Boland, M. J., et al. (2014). Actinidin from kiwifruit (Actinidia deliciosa cv. Hayward) increases the digestion and rate of gastric emptying of meat proteins in the growing pig. The British Journal of Nutrition, 111, 957–967.PubMedCrossRefPubMedCentralGoogle Scholar
  122. Moughan, P. J. (1999). In vitro techniques for the assessment of the nutritive value of feed grains for pigs: A review. Australian Journal of Agricultural Research, 50, 871–880.CrossRefGoogle Scholar
  123. Moughan, P. J. (2005). Absorption of chemically unmodified lysine from proteins in foods that have sustained damage during processing or storage. Journal of AOAC International, 88, 949–954.PubMedPubMedCentralGoogle Scholar
  124. Moughan, P. J., Birtles, M. J., Cranwell, P. D., Smith, W. C., & Pedraza, M. (1992). The piglet as a model animal for studying aspects of digestion and absorption in milk-fed human infants. World Review of Nutrition and Dietetics, 67, 40–113.PubMedCrossRefPubMedCentralGoogle Scholar
  125. Moughan, P. J., Butts, C. A., Rowan, A. M., & Deglaire, A. (2005). Dietary peptides increase endogenous amino acid losses from the gut in adults. The American Journal of Clinical Nutrition, 81, 1359–1365.PubMedCrossRefPubMedCentralGoogle Scholar
  126. Moughan, P. J., Butts, C. A., van Wijk, H., Rowan, A. M., & Reynolds, G. W. (2005). An acute ileal amino acid digestibility assay is a valid procedure for use in human ileostomates. The Journal of Nutrition, 135, 404–409.PubMedCrossRefPubMedCentralGoogle Scholar
  127. Moughan, P. J., Cranwell, P. D., Darragh, A. J., Rowan, A. M. (1994). The domestic pig as a model animal for studying digestion in humans. Paper presented at the VIth International Symposium on Digestive Physiology in Pigs.Google Scholar
  128. Moughan, P. J., Darragh, A. J., Smith, W. C., & Butts, C. A. (1990). Perchloric and trichloroacetic acids as precipitants of protein in endogenous ileal digesta from the rat. Journal of the Science of Food and Agriculture, 52, 13–21.CrossRefGoogle Scholar
  129. Moughan, P. J., & Miner-Williams, W. (2013). Determination of protein digestibility in the growing pig. In F. Blachier, G. Wu, & Y. Yin (Eds.), Nutritional and physiological functions of amino acids in pigs (pp. 251–271). Wien: Springer.CrossRefGoogle Scholar
  130. Moughan, P. J., & Rutherfurd, S. M. (1996). A new method for determining digestible reactive lysine in foods. Journal of Agricultural and Food Chemistry, 44, 2202–2209.CrossRefGoogle Scholar
  131. Moughan, P. J., & Rutherfurd, S. M. (2012). Gut luminal endogenous protein: Implications for the determination of ileal amino acid digestibility in humans. The British Journal of Nutrition, 108, S258–S263.PubMedCrossRefPubMedCentralGoogle Scholar
  132. Mroz, Z., Bakker, G. C., Jongbloed, A. W., Dekker, R. A., Jongbloed, R., & van Beers, A. (1996). Apparent digestibility of nutrients in diets with different energy density, as estimated by direct and marker methods for pigs with or without ileo-cecal cannulas. Journal of Animal Science, 74, 403–412.PubMedCrossRefPubMedCentralGoogle Scholar
  133. Nasset, E. S., & Ju, J. S. (1975). Amino acids in gut contents and blood plasma of rats as affected by dietary amino acid imbalance. The Journal of Nutrition, 105, 69–79.CrossRefGoogle Scholar
  134. Nasset, E. S., Schwartz, P., & Weiss, H. V. (1955). The digestion of proteins in vivo. The Journal of Nutrition, 56, 83–94.PubMedCrossRefPubMedCentralGoogle Scholar
  135. Nixon, S. E., & Mawer, G. E. (1970). The digestion and absorption of protein in man. The British Journal of Nutrition, 24, 227–240.PubMedCrossRefPubMedCentralGoogle Scholar
  136. Nyachoti, C. M., de Lange, C. F. M., McBride, B. W., & Schulze, H. (1997). Significance of endogenous gut nitrogen losses in the nutrition of growing pigs: A review. Canadian Journal of Animal Science, 77, 149–163.CrossRefGoogle Scholar
  137. Nyman, M., & Asp, N. G. (1982). Fermentation of dietary fibre components in the rat intestinal tract. The British Journal of Nutrition, 47, 357–366.PubMedCrossRefPubMedCentralGoogle Scholar
  138. O’Connor, A., & O’Morain, C. (2014). Digestive function of the stomach. Digestive Diseases, 32, 186–191.PubMedCrossRefPubMedCentralGoogle Scholar
  139. Oberli, M., Marsset-Baglieri, A., Airinei, G., Santé-Lhoutellier, V., Khodorova, N., Rémond, D., et al. (2015). High true ileal digestibility but not postprandial utilization of nitrogen from bovine meat protein in humans is moderately decreased by high-temperature, long-duration cooking. The Journal of Nutrition, 145, 2221–2228.PubMedCrossRefPubMedCentralGoogle Scholar
  140. Patterson, J. K., Lei, X. G., & Miller, D. D. (2008). The pig as an experimental model for elucidating the mechanisms governing dietary influence on mineral absorption. Experimental Biology and Medicine (Maywood), 233, 651–664.CrossRefGoogle Scholar
  141. Patterson, E., Ryan, P. M., Cryan, J. F., Dinan, T. G., Ross, R. P., Fitzgerald, G. F., et al. (2016). Gut microbiota, obesity and diabetes. Postgraduate Medical Journal, 92, 286–300.PubMedCrossRefPubMedCentralGoogle Scholar
  142. Pedersen, A. M., Bardow, A., Jensen, S. B., & Nauntofte, B. (2002). Saliva and gastrointestinal functions of taste, mastication, swallowing and digestion. Oral Diseases, 8, 117–129.PubMedCrossRefPubMedCentralGoogle Scholar
  143. Pieper, R., Boudry, C., Bindelle, J., Vahjen, W., & Zentek, J. (2014). Interaction between dietary protein content and the source of carbohydrates along the gastrointestinal tract of weaned piglets. Archives of Animal Nutrition, 68, 263–280.PubMedCrossRefPubMedCentralGoogle Scholar
  144. Rainbird, A. L., & Low, A. G. (1986). Effect of various types of dietary fibre on gastric emptying in growing pigs. The British Journal of Nutrition, 55, 111–121.PubMedCrossRefPubMedCentralGoogle Scholar
  145. Rajilić-Stojanović, M., Maathuis, A., Heilig, H. G. H. J., Venema, K., de Vos, W. M., & Smidt, H. (2010). Evaluating the microbial diversity of an in vitro model of the human large intestine by phylogenetic microarray analysis. Microbiology, 156, 3270–3281.PubMedCrossRefPubMedCentralGoogle Scholar
  146. Regmi, P. R., Ferguson, N. S., & Zijlstra, R. T. (2009). In vitro digestibility techniques to predict apparent total tract energy digestibility of wheat in grower pigs. Journal of Animal Science, 87, 3620–3629.PubMedCrossRefPubMedCentralGoogle Scholar
  147. Rodwell, V. W. (1985). Harper’s review of biochemistry (20th ed.). Los Altos, CA: Lange Medical Publications.Google Scholar
  148. Rogers, Q. R., & Phang, J. M. (1985). Deficiency of proline-5-carboxylate synthase in the intestinal mucosa of the cat. The Journal of Nutrition, 115, 146–153.PubMedCrossRefPubMedCentralGoogle Scholar
  149. Rosenblum, J. L., Irwin, C. L., & Alpers, D. H. (1988). Starch and glucose oligosaccharides protect salivary-type amylase activity at acid pH. The American Journal of Physiology, 254, G775–G780.PubMedPubMedCentralGoogle Scholar
  150. Roth-Maier, D. A., Machmüller, A., Kreuzer, M., & Kirchgessner, M. (1993). Effects of pectin supplementation on the digestion of different structural carbohydrate fractions and on bacterial nitrogen turnover in the hindgut of adult sows. Animal Feed Science and Technology, 42, 177–191.CrossRefGoogle Scholar
  151. Rowan, A. M., Moughan, P. J., Wilson, M. N., Maher, K., & Tasman-Jones, C. (1994). Comparison of the ileal and faecal digestibility of dietary amino acids in adult humans and evaluation of the pig as a model animal for digestion studies in man. The British Journal of Nutrition, 71, 29–42.PubMedPubMedCentralCrossRefGoogle Scholar
  152. Roy, C. C., Kien, C. L., Bouthillier, L., & Levy, E. (2006). Short-chain fatty acids: Ready for prime time? Nutrition in Clinical Practice, 21, 351–366.PubMedCrossRefPubMedCentralGoogle Scholar
  153. Russell, T. L., Berardi, R. R., Barnett, J. L., Dermentzoglou, L. C., Jarvenpaa, K. M., Schmaltz, S. P., et al. (1993). Upper gastrointestinal pH in seventy-nine healthy, elderly, North American men and women. Pharmaceutical Research, 10, 187–196.PubMedCrossRefPubMedCentralGoogle Scholar
  154. Rutherfurd, S. M., Montoya, C. A., Zou, M. L., Moughan, P. J., Drummond, L. N., & Boland, M. J. (2011). Effect of actinidin from kiwifruit (Actinidia deliciosa cv. Hayward) on the digestion of food proteins determined in the growing rat. Food Chemistry, 129, 1681–1689.CrossRefGoogle Scholar
  155. Rutherfurd, S. M., Moughan, P. J., & Morel, P. C. H. (1997). Assessment of the true ileal digestibility of reactive lysine as a predictor of lysine uptake from the small intestine of the growing pig. Journal of Agricultural and Food Chemistry, 45, 4378–4383.CrossRefGoogle Scholar
  156. Rutherfurd, S. M., Moughan, P. J., & van Osch, L. (1997). Digestible reactive lysine in processed feedstuffs: Application of a new bioassay. Journal of Agricultural and Food Chemistry, 45, 1189–1194.CrossRefGoogle Scholar
  157. Rutherfurd, S. M., Torbatinejad, N. M., & Moughan, P. J. (2006). Available (ileal digestible reactive) lysine in selected cereal-based food products. Journal of Agricultural and Food Chemistry, 54, 9453–9457.PubMedCrossRefGoogle Scholar
  158. Saito, D., Nakaji, S., Fukuda, S., Shimoyama, T., Sakamoto, J., & Sugawara, K. (2005). Comparison of the amount of pectin in the human terminal ileum with the amount of orally administered pectin. Nutrition, 21, 914–919.PubMedCrossRefGoogle Scholar
  159. Satchithanandam, S., Klurfeld, D. M., Calvert, R. J., & Cassidy, M. M. (1996). Effects of dietary fibers on gastrointestinal mucin in rats. Nutrition Research, 16, 1163–1177.CrossRefGoogle Scholar
  160. Sauer, W. C., & de Lange, K. (1992). Novel methods for determining protein and amino acid digestibilities in feedstuffs. In S. Nissen (Ed.), Modern methods in protein nutrition and metabolism (pp. 87–119). New York: Academic.CrossRefGoogle Scholar
  161. Sauer, W. C., Stothers, S. C., & Parker, R. J. (1977). Apparent and true availabilities of amino acids in wheat and milling by-products for growing pigs. Canadian Journal of Animal Science, 57, 775–784.CrossRefGoogle Scholar
  162. Schmitz, M., Ahrens, F., Schön, J., & Hagemeister, H. (1991). Amino acid absorption and its significance for protein supply in the pig. In M. W. A. Verstegen, J. Huisman, & L. A. den Hartog (Eds.), Fifth international symposium on digestive physiology in pigs (pp. 85–87). Wageningen: Pudoc.Google Scholar
  163. Schneeman, B. O. (1982). Digestive enzyme activities from the pancreas in response to diet. In J. P. Laplace, T. Corring, & A. Rerat (Eds.), Physiologie Digestive Chez le Porc (pp. 125–131). Paris: Institut National de la Recherche Agronomique.Google Scholar
  164. Schulze, H., Butts, C. A., Moughan, P. J., Verstegen, M. W. A. (1994). Endogenous ileal nitrogen flow in pigs determined using the 15N-isotope dilution and peptide alimentation ultrafiltration methods. Paper presented at the VIth International Symposium on Digestive Physiology in Pigs.Google Scholar
  165. Schulze, H., van Leeuwen, P., Verstegen, M. W., Huisman, J., Souffrant, W. B., & Ahrens, F. (1994). Effect of level of dietary neutral detergent fiber on ileal apparent digestibility and ileal nitrogen losses in pigs. Journal of Animal Science, 72, 2362–2368.PubMedCrossRefPubMedCentralGoogle Scholar
  166. Skilton, G. A., Moughan, P. J., & Smith, W. C. (1988). Determination of endogenous amino acid flow at the terminal ileum of the rat. Journal of the Science of Food and Agriculture, 44, 227–235.CrossRefGoogle Scholar
  167. Snook, J. T. (1973). Protein digestion. World Review of Nutrition and Dietetics, 18, 121–176.PubMedCrossRefPubMedCentralGoogle Scholar
  168. Souffrant, W. B. (1991). Endogenous nitrogen losses during digestion in pigs. In M. W. A. Verstegen, J. Huisman, & L. A. den Hartog (Eds.), Proceedings of the Vth international symposium on digestive physiology in pigs (pp. 147–166). Wageningen: Pudoc.Google Scholar
  169. Souffrant, W. B. (2001). Effect of dietary fibre on ileal digestibility and endogenous nitrogen losses in the pig. Animal Feed Science and Technology, 90, 93–102.CrossRefGoogle Scholar
  170. Souffrant, W. B., Köhler, R., & Gebhardt, G. (1982). Determination of endogenous nitrogen in the digestive contents by the isotope technique (15N). In J. P. Laplace, T. Corring, & A. Rerat (Eds.), Physiologie Digestive Chez le Porc (pp. 176–187). Paris: Institut National de la Recherche Agronomique.Google Scholar
  171. Stearns, J. C., Lynch, M. D. J., Senadheera, D. B., Tenenbaum, H. C., Goldberg, M. B., Cvitkovitch, D. G., et al. (2011). Bacterial biogeography of the human digestive tract. Scientific Reports, 1, 170.PubMedPubMedCentralCrossRefGoogle Scholar
  172. Stein, H. H., Sève, B., Fuller, M. F., Moughan, P. J., & de Lange, C. F. M. (2007). Invited review: Amino acid bioavailability and digestibility in pig feed ingredients: Terminology and application. Journal of Animal Science, 85, 172–180.PubMedCrossRefGoogle Scholar
  173. Taverner, M. R., Hume, I. D., & Farrell, D. J. (1981). Availability to pigs of amino acids in cereal grains. I. Endogenous levels of amino acids in ileal digesta and faeces of pigs given cereal diets. The British Journal of Nutrition, 46, 149–158.PubMedCrossRefGoogle Scholar
  174. Theodorou, V., Fioramonti, J., & Buéno, L. (1989). Water absorption from the pig proximal colon: Relations with feeding and flow of digesta. Quarterly Journal of Experimental Physiology, 74, 521–529.PubMedCrossRefGoogle Scholar
  175. Topping, D. L., & Clifton, P. M. (2001). Short-chain fatty acids and human colonic function: Roles of resistant starch and nonstarch polysaccharides. Physiological Reviews, 81, 1031–1064.PubMedCrossRefPubMedCentralGoogle Scholar
  176. Torbatinejad, N. M., Rutherfurd, S. M., & Moughan, P. J. (2005). Total and reactive lysine contents in selected cereal-based food products. Journal of Agricultural and Food Chemistry, 53, 4454–4458.PubMedCrossRefPubMedCentralGoogle Scholar
  177. van den Bogert, B., Erkus, O., Boekhorst, J., de Goffau, M., Smid, E. J., Zoetendal, E. G., et al. (2013). Diversity of human small intestinal Streptococcus and Veillonella populations. FEMS Microbiology Ecology, 85, 376–388.PubMedCrossRefPubMedCentralGoogle Scholar
  178. Van Der Meer, J. M., & Perez, J. M. (1992). In-vitro evaluation of European diets for pigs. Prediction of the organic matter digestibility by an enzymic method or by chemical analysis. Journal of the Science of Food and Agriculture, 59, 359–363.CrossRefGoogle Scholar
  179. van der Wielen, N., Moughan, P. J., Mensink, M. (2017). Amino acid absorption in the large intestine of humans and porcine models. Journal of Nutrition, 147, 1493–1498.Google Scholar
  180. van Leeuwen, P., van Kleef, D. J., van Kempen, G. J. M., Huisman, J., & Verstegen, M. W. A. (1991). The post valve T-caecum cannulation technique in pigs applicated to determine the digestibility of amino acid in maize, groundnut and sunflower meal. Journal of Animal Physiology and Animal Nutrition, 65, 183–193.CrossRefGoogle Scholar
  181. van Winsen, R. L., Urlings, B. A. P., Lipman, L. J. A., Snijders, J. M. A., Keuzenkamp, D., Verheijden, J. H. M., et al. (2001). Effect of fermented feed on the microbial population of the gastrointestinal tracts of pigs. Applied and Environmental Microbiology, 67, 3071–3076.PubMedPubMedCentralCrossRefGoogle Scholar
  182. Vervaeke, I. J., Dierick, N. A., Decuypere, J. A., & Cosijn, G. M. (1985). A new technique for sampling large amounts of caecal contents of pigs. Archiv für Tierernaehrung, 35, 175–181.CrossRefGoogle Scholar
  183. Vinolo, M. A., Rodrigues, H. G., Nachbar, R. T., & Curi, R. (2011). Regulation of inflammation by short chain fatty acids. Nutrients, 3, 858–876.PubMedPubMedCentralCrossRefGoogle Scholar
  184. Wang, M., Ahrné, S., Jeppsson, B., & Molin, G. (2005). Comparison of bacterial diversity along the human intestinal tract by direct cloning and sequencing of 16S rRNA genes. FEMS Microbiology Ecology, 54, 219–231.PubMedCrossRefPubMedCentralGoogle Scholar
  185. Wilfart, A., Montagne, L., Simmins, H., Noblet, J., & van Milgen, J. (2007). Digesta transit in different segments of the gastrointestinal tract of pigs as affected by insoluble fibre supplied by wheat bran. The British Journal of Nutrition, 98, 54–62.PubMedCrossRefPubMedCentralGoogle Scholar
  186. Wilfart, A., Montagne, L., Simmins, P. H., van Milgen, J., & Noblet, J. (2007). Sites of nutrient digestion in growing pigs: Effect of dietary fiber. Journal of Animal Science, 85, 976–983.PubMedCrossRefPubMedCentralGoogle Scholar
  187. Williams, B. A., Verstegen, M. W. A., & Tamminga, S. (2001). Fermentation in the large intestine of single-stomached animals and its relationship to animal health. Nutrition Research Reviews, 14, 207–227.PubMedCrossRefPubMedCentralGoogle Scholar
  188. Wisker, E., Daniel, M., Rave, G., & Feldheim, W. (1998). Fermentation of non-starch polysaccharides in mixed diets and single fibre sources: Comparative studies in human subjects and in vitro. The British Journal of Nutrition, 80, 253–261.PubMedPubMedCentralGoogle Scholar
  189. Yin, Y. L., McEvoy, J. D. G., Schulze, H., Hennig, U., Souffrant, W. B., & McCracken, K. J. (2000). Apparent digestibility (ileal and overall) of nutrients as evaluated with PVTC-cannulated or ileo-rectal anastomised pigs fed diets containing two indigestible markers. Livestock Production Science, 62, 133–141.CrossRefGoogle Scholar
  190. Young, M., & Reed, K. R. (2016). Organoids as a model for colorectal cancer. Current Colorectal Cancer Reports, 12, 281–287.PubMedPubMedCentralCrossRefGoogle Scholar
  191. Zebrowska, T. (1973a). Digestion and absorption of nitrogenous compounds in the large intestine of pigs. Roczniki Nauk Rolniczych, B95, 85–89.Google Scholar
  192. Zebrowska, T. (1973b). Influence of dietary protein source on the rate of digestion in the small intestine of pigs. Part I. Amount and composition of digesta. Roczniki Nauk Rolniczych, B95, 115–131.Google Scholar
  193. Zebrowska, T., Simon, O., Münchmeyer, R., Wolf, E., Bergner, H., & Zebrowska, H. (1982). Flow of endogenous and exogenous amino acids along the gut of pigs. Archiv für Tierernaehrung, 32, 431–444.CrossRefGoogle Scholar
  194. Zentek, J., Ferrara, F., Pieper, R., Tedin, L., Meyer, W., & Vahjen, W. (2013). Effects of dietary combinations of organic acids and medium chain fatty acids on the gastrointestinal microbial ecology and bacterial metabolites in the digestive tract of weaning piglets. Journal of Animal Science, 91, 3200–3210.PubMedCrossRefPubMedCentralGoogle Scholar
  195. Zhao, W. J., Wang, Y. P., Liu, S. Y., Huang, J., Zhai, Z., He, C., et al. (2015). The dynamic distribution of porcine microbiota across different ages and gastrointestinal tract segments. PLoS One, 10, e0117441.PubMedPubMedCentralCrossRefGoogle Scholar
  196. Zimmermann, B., & Mosenthin, R. (2002). Chapter 22 invasive techniques to study the processes of digestion and absorption of nutrients in pigs. In R. Zabielski, P. C. Gregory, B. Weström, & E. Salek (Eds.), Biology of growing animals (Vol. 1, pp. 625–656). Amsterdam: Elsevier.CrossRefGoogle Scholar
  197. Zoetendal, E. G., Raes, J., van den Bogert, B., Arumugam, M., Booijink, C. C., Troost, F. J., et al. (2012). The human small intestinal microbiota is driven by rapid uptake and conversion of simple carbohydrates. The ISME Journal, 6, 1415–1426.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Carlos A. Montoya
    • 1
    • 2
    Email author
  • Suzanne Hodgkinson
    • 1
    • 2
  • Paul J. Moughan
    • 2
  1. 1.Massey Institute of Food Science and TechnologyMassey UniversityPalmerston NorthNew Zealand
  2. 2.Riddet InstituteMassey UniversityPalmerston NorthNew Zealand

Personalised recommendations