Advertisement

Final Remarks

  • Robert K. Nowicki
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 802)

Abstract

Since the first publications in which Professor Pawlak proposed the theory of the rough sets Pawlak (Inf Syst 6:205–218, 1981) [22]), Pawlak (Int J Comput Inf Sci 11:341–356, 1982 [23]), Pawlak (Rough Sets: Theoretical Aspects of Reasoning About Data, Kluwer, Dordrecht, 1991 [24]), many extensions and modifications of this concept have been put forward Pal and Skowron (Rough-Fuzzy Hybridization: A New Trend in Decision Making. Springer, Berlin, Heidelberg, 1999 [20]), Pawlak (Inf Sci 177:28–40, 2007 [25]), Peters et al. (Design of rough neurons: rough set foundation and petri net model. Springer, Heidelberg 2010 [29]) including the covering rough sets Zhu and Wang (Inf Sci 152:217–230, 2003 [36]), Zhu and Wang (A new type of covering rough set, 444–449, 2006 [37]), Zhu and Wang (IEEE Trans Knowl Data Eng 19:1131–1144, 2007 [38]), the rough neural networks Lingras (Rough neural networks, 1445–1450, 1996 [13]), Peters et al. (Design of rough neurons: rough set foundation and petri net model. Springer, Berlin, Heidelberg, pp. 283–291, 2010 [27]), the variable precision rough sets Ziarko (J. Comput Syst Sci 46:39–59, 1993 [39]), the multicriteria rough decision systems Greco (INFOR Inf Syst Oper Res 38:161–195, 2000[7]) and many others.

References

  1. 1.
    Banerjee, M., Mitra, S., Pal, S.K.: Rough fuzzy MLP: knowledge encoding and classification. IEEE Trans. Neural Netw. 9(6), 1203–1216 (1998)CrossRefGoogle Scholar
  2. 2.
    Bian, H., Mazlack, L.: Fuzzy-rough nearest-neighbor classification approach. In: 22nd International Conference of the North American Fuzzy Information Processing Society, NAFIPS 2003, pp. 500–505 (2003)Google Scholar
  3. 3.
    Cpalka, K.: Design of Interpretable Fuzzy Systems. Studies in Computational Intelligence. vol. 684. Springer International Publishing (2017)Google Scholar
  4. 4.
    Ding, S., Ma, G., Shi, Z.: A rough rbf neural network based on weighted regularized extreme learning machine. Neural Proces. Lett. 40(3), 245–260 (2014)CrossRefGoogle Scholar
  5. 5.
    Dubois, D., Prade, H.: Rough fuzzy sets and fuzzy rough sets. Int. J. Gen. Syst. 17(2–3), 191–209 (1990)zbMATHCrossRefGoogle Scholar
  6. 6.
    Dubois, D., Prade, H.: Putting rough sets and fuzzy sets together. In: Sowiski, R. (ed.) Intelligent Decision Support: Handbook of Applications and Advances of the Rough Sets Theory, pp. 203–232. Kluwer, Dordrecht (1992)CrossRefGoogle Scholar
  7. 7.
    Greco, S., Matarazzo, B., Slowinski, R.: Extension of the rough set approach to multicriteria decision support. INFOR: Inf. Syst. Oper. Res. 38(3), 161–195 (2000)zbMATHGoogle Scholar
  8. 8.
    Hassan, Y., Tazaki, E.: Interpretation of rough neural networks as emergent model. In: Wang, G., Liu, Q., Yao, Y., Skowron, A. (eds.) Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, pp. 245–249. Springer, Berlin, Heidelberg (2003)zbMATHCrossRefGoogle Scholar
  9. 9.
    Jensen, R., Cornelis, C.: A new approach to fuzzy-rough nearest neighbour classification. In: Chan, C.C., Grzymala-Busse, J.W., Ziarko, W.P. (eds.) Rough Sets and Current Trends in Computing, pp. 310–319. Springer, Berlin, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Jensen, R., Cornelis, C.: Fuzzy-rough nearest neighbour classification. In: Peters, J.F., Skowron, A., Chan, C.C., Grzymala-Busse, J.W., Ziarko, W.P. (eds.) Transactions on Rough Sets XIII, pp. 56–72. Springer, Berlin, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Li, Y., Fang, T.: Rough set methods for constructing support vector machines. In: Wang, G., Liu, Q., Yao, Y., Skowron, A. (eds.) Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, pp. 334–338. Springer, Berlin, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Liao, H., Ding, S., Wang, M., Ma, G.: An overview on rough neural networks. Neural Comput. Appl. 27(7), 1805–1816 (2016)CrossRefGoogle Scholar
  13. 13.
    Lingras, P.: Rough neural networks. In: Proceedings of the Sixth International Conference of Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU96), pp. 1445–1450 (1996)Google Scholar
  14. 14.
    Lingras, P., Bhalchandra, P., Butz, C., Asharaf, S.: Rough Support Vectors: Classification, Regression, Clustering, pp. 491–515. Springer, Berlin, Heidelberg (2013)CrossRefGoogle Scholar
  15. 15.
    Marček, M., Marček, D.: Rbf neural network implementation of fuzzy systems: application to time series modeling. In: An, A., Stefanowski, J., Ramanna, S., Butz, C.J., Pedrycz, W., Wang, G. (eds.) Rough Sets, Fuzzy Sets, Data Mining and Granular Computing, pp. 500–507. Springer, Berlin, Heidelberg (2007)zbMATHCrossRefGoogle Scholar
  16. 16.
    Mleczko, W.K., Nowicki, R.K., Angryk, R.: Rough Restricted Boltzmann Machine – New Architecture for Incomplete Input Data, pp. 114–125. Springer International Publishing, Cham (2016)Google Scholar
  17. 17.
    Nowak, B.A., Nowicki, R.K., Mleczko, W.K.: A new method of improving classification accuracy of decision tree in case of incomplete samples. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) Artificial Intelligence and Soft Computing. Lecture Notes in Computer Science, vol. 7894, pp. 448–458. Springer, Berlin, Heidelberg (2013)CrossRefGoogle Scholar
  18. 18.
    Pal, S.K., Ray, S.S., Ganivada, A.: Classification Using Fuzzy Rough Granular Neural Networks, pp. 39–76. Springer International Publishing, Cham (2017)Google Scholar
  19. 19.
    Pal, S.K., Ray, S.S., Ganivada, A.: Clustering Using Fuzzy Rough Granular Self-organizing Map, pp. 77–105. Springer International Publishing, Cham (2017)Google Scholar
  20. 20.
    Pal, S.K., Skowron, A. (eds.): Rough-Fuzzy Hybridization: A New Trend in Decision Making, 1st edn. Springer, Berlin, Heidelberg (1999)zbMATHGoogle Scholar
  21. 21.
    Pan, W., She, K., Wei, P., Zeng, K.: Nearest neighbor condensation based on fuzzy rough set for classification. In: Miao, D., Pedrycz, W., Ślzak, D., Peters, G., Hu, Q., Wang, R. (eds.) Rough Sets and Knowledge Technology, pp. 432–443. Springer International Publishing, Cham (2014)Google Scholar
  22. 22.
    Pawlak, Z.: Information systems—theoretical foundations. Inf. Syst. 6, 205–218 (1981)zbMATHCrossRefGoogle Scholar
  23. 23.
    Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 11(5), 341–356 (1982)zbMATHCrossRefGoogle Scholar
  24. 24.
    Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning About Data. Kluwer, Dordrecht (1991)zbMATHCrossRefGoogle Scholar
  25. 25.
    Pawlak, Z., Skowron, A.: Rough sets: some extensions. Inf. Sci. 177(1), 28–40 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Peters, J.F., Skowron, A., Han, L., Ramanna, S.: Towards rough neural computing based on rough membership functions: theory and application. In: Ziarko, W., Yao, Y. (eds.) Rough Sets and Current Trends in Computing, pp. 611–618. Springer, Berlin, Heidelberg (2001)zbMATHCrossRefGoogle Scholar
  27. 27.
    Peters, J.F., Skowron, A., Suraj, Z., Han, L., Ramanna, S.: Design of rough neurons: rough set foundation and petri net model. In: Raś, Z.W., Ohsuga, S. (eds.) Foundations of Intelligent Systems, pp. 283–291. Springer, Berlin, Heidelberg (2010)zbMATHGoogle Scholar
  28. 28.
    Polkowski, L., Semeniuk-Polkowska, M.: Where rough sets and fuzzy sets meet. Fundam. Informaticae 142(1–4), 269–284 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Polkowski, L., Tsumoto, S., Lin, T.Y. (eds.): Rough Set Methods and Applications. New Developments in Knowledge Discovery in Information Systems, vol. 56. Physica-Verlag, Heidelberg (2000)Google Scholar
  30. 30.
    Rosales-Perez, A., Garcia, S., Terashima-Marin, H., Coello, C.A.C., Herrera, F.: Mc2esvm: multiclass classification based on cooperative evolution of support vector machines. IEEE Comput. Intell. Mag. 13(2), 18–29 (2018)CrossRefGoogle Scholar
  31. 31.
    Sahu, S.K., Kumar, P., Singh, A.P.: Modified k-NN algorithm for classification problems with improved accuracy. Int. J. Inf. Technol. 10(1), 65–70 (2018)Google Scholar
  32. 32.
    Segatori, A., Marcelloni, F., Pedrycz, W.: On distributed fuzzy decision trees for big data. IEEE Trans. Fuzzy Syst. 26(1), 174–192 (2018)CrossRefGoogle Scholar
  33. 33.
    Sumati, V., Patvardhan, C.: Interval type-2 mutual subsethood fuzzy neural inference system (IT2MSFuNIS). IEEE Trans. Fuzzy Syst. 26(1), 203–215 (2018)CrossRefGoogle Scholar
  34. 34.
    Zadeh, L.A.: Computing with Words, Studies in Fuzziness and Soft Computing, vol. 277. Springer, Berlin, Heidelberg (2012)Google Scholar
  35. 35.
    Zhang, T., Xiao, J., Wang, X., Ma, F.: RST-based RBF neural network modeling for nonlinear system. In: Liu, D., Fei, S., Hou, Z.G., Zhang, H., Sun, C. (eds.) Advances in Neural Networks - ISNN 2007, pp. 658–666. Springer, Berlin, Heidelberg (2007)CrossRefGoogle Scholar
  36. 36.
    Zhu, W., Wang, F.Y.: Reduction and axiomization of covering generalized rough sets. Inf. Sci. 152, 217–230 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Zhu, W., Wang, F.Y.: A new type of covering rough set. In: 2006 3rd International IEEE Conference Intelligent Systems, pp. 444–449 (2006)Google Scholar
  38. 38.
    Zhu, W., Wang, F.Y.: On three types of covering-based rough sets. IEEE Trans. Knowl. Data Eng. 19(8), 1131–1144 (2007)CrossRefGoogle Scholar
  39. 39.
    Ziarko, W.: Variable precision rough set model. J. Comput. Syst. Sci. 46(1), 39–59 (1993)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Computational IntelligenceCzstochowa University of TechnologyCzstochowaPoland

Personalised recommendations