BARNHILL’s Interpolation and Relevant Isoparametric Elements in Triangular Patches

  • Christopher G. ProvatidisEmail author
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 256)


This chapter discusses the derivation of macroelements based on Barnhill’s interpolation formula within triangular CAD patches. Particular attention is paid to the classical triangular elements up to the sixth degree. In both cases, not only boundary nodes but also internal ones will be considered. The performance of a single macroelement is tested in potential boundary value and eigenvalue problems (Laplace equation and acoustics). For the sake of brevity, the discussion restricts to C0-continuity only.


BARNHILL interpolation Triangular patch Triangular macroelements Test cases 


  1. 1.
    Alfeld P, Barnhill RE (1984) A transfinite C2 interpolant over triangles. Rocky Mt J Math 14:17–40MathSciNetCrossRefGoogle Scholar
  2. 2.
    Antoniou D (2010) Barnhill’s macroelements in plane elasticity problems. M.Sc. thesis, National Technical University of Athens, Interdepartmental Course in Computational Mechanics (supervisor: Prof. Provatidis CG)Google Scholar
  3. 3.
    Barnhill RE (1976) Blending function interpolation: a survey and some new results. In: Collatz L, Werner H, Meinardus G (eds) Numerische Methoden der Approximationstheorie, Band 3. Springer Basel AG, pp 43–89Google Scholar
  4. 4.
    Barnhill R (1985) Surfaces in computer aided geometric design: a survey with new results. Comput Aided Geom Des 2:1–17MathSciNetCrossRefGoogle Scholar
  5. 5.
    Barnhill RE, Little FF (1984) Three- and four-dimensional surfaces. Rocky Mt J Math 14:77–102MathSciNetCrossRefGoogle Scholar
  6. 6.
    Barnhill RE, Whiteman JR (1973) Error analysis of finite element methods with triangles for elliptic boundary value problems. In: Whiteman JR (ed) The mathematics of finite elements and applications. Academic Press, London, pp 83–122CrossRefGoogle Scholar
  7. 7.
    Barnhill RE, Gregory JA, Whiteman JR (1972) The extension and application of Sard kernel theorems to compute finite element error bounds. In: Aziz AK (ed) The mathematical foundations of the finite element method with applications to partial differential equations. Academic Press, New York, pp 749–755CrossRefGoogle Scholar
  8. 8.
    Barnhill R, Birkhoff G, Gordon W (1973) Smooth interpolation in triangles. J Approx Theory 8(2):114–128MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bathe K-J (1996) Finite element procedures. Prentice-Hall, Upper Saddle River, New JerseyGoogle Scholar
  10. 10.
    Becker EB, Carey GF, Oden JT (1981) Finite elements: an introduction, vol I. Prentice-Hall, Englewood Cliffs, New JerseyGoogle Scholar
  11. 11.
    Bieri HP, Prautzsch H (1999) Preface (of a special issue). Comput Aided Geom Des 16:579–581MathSciNetCrossRefGoogle Scholar
  12. 12.
    Blevins RD (1979) Formulas for natural frequency and mode shape. Van Nostrand Reinhold Company, New YorkGoogle Scholar
  13. 13.
    Boehm W, Müller A (1999) On de Casteljau’s algorithm. Comput Aided Geom Des 16(7):587–605MathSciNetCrossRefGoogle Scholar
  14. 14.
    Coons SA (1964) Surfaces for computer aided design of space form. Project MAC, MIT (1964), revised for MAC-TR-41 (1967). Available as AD 663 504 from the National Technical Information Service (CFSTI), Sills Building, 5285 Port Royal Road, Springfield, VA 22161, USA. Online Available from
  15. 15.
    De Boor C (1987) B-form basics. In: Farin G (ed) Geometric modeling: algorithms and new trends. SIAM, Philadelphia, pp 131–148Google Scholar
  16. 16.
    De Casteljau P (1959) Outillages methods calcul. Technical report, A. Citroën, ParisGoogle Scholar
  17. 17.
    De Casteljau P (1959) Courbes à poles. National Industrial Property Institute, INPI, FranceGoogle Scholar
  18. 18.
    De Casteljau P (1963) Courbes et surface à poles. Technical report, A. Citroën, ParisGoogle Scholar
  19. 19.
    de De Casteljau PF (1999) De Casteljau’s autobiography: my life at Citroën. Comput Aided Geom Des 16:583–586Google Scholar
  20. 20.
    Dimitriou V (2004) Adaptive finite elements and related meshes. Ph.D. dissertation (advisor: Prof. Kanarachos AE), National Technical University of Athens, School of Mechanical Engineering, Athens, Aug 2004 (in Greek). Online available from
  21. 21.
    El-Zafrany A, Cookson RA (1986) Derivation of Lagrangian and Hermitian shape functions for triangular elements. Int J Numer Meth Eng 23(2):275–285MathSciNetCrossRefGoogle Scholar
  22. 22.
    Farin G (1979) Subsplines über Dreiecken (transl: subsplines over triangles). Ph.D. thesis, Technical University of Braunschweig, GermanyGoogle Scholar
  23. 23.
    Farin G (1980) Bézier polynomials over triangles and the construction of piecewise Cr polynomials. Technical report TR/91, Brunel University, Uxbridge, EnglandGoogle Scholar
  24. 24.
    Farin G (1985) A modified Clough-Tocher interpolant. Comput Aided Geom Des 2(1–3):19–27CrossRefGoogle Scholar
  25. 25.
    Farin G (1986) Triangular Bernstein-Bézier patches. Comput Aided Geom Des 3(2):83–128MathSciNetCrossRefGoogle Scholar
  26. 26.
    Farin G (1990) Curves and surfaces for computer aided geometric design: a practical guide. Academic Press, BostonGoogle Scholar
  27. 27.
    Gregory JA (1985) Interpolation to boundary data on the simplex. Comput Aided Geom Des 2(1–3):43–52MathSciNetCrossRefGoogle Scholar
  28. 28.
    Hussain F, Karim MS, Ahamad R (2012) Appropriate Gaussian quadrature formulae for triangles. Int J Appl Math Comput 4(1):24–38 (Journal homepage:
  29. 29.
    Kanarachos A, Dimitriou V (2002) Adaptive FEM for plane elasticity problems using ‘pre-constructed’ large finite elements. In: Tsahalis D (ed) Proceedings of 4th GRACM congress on computational mechanics, Patras Greece, vol I, pp 324–332Google Scholar
  30. 30.
    Nielson GM (1979) The side-vertex method for interpolation in triangles. J Approx Theory 25:318–336MathSciNetCrossRefGoogle Scholar
  31. 31.
    Pasquetti R (2016) Comparison of some isoparametric mappings for curved triangular spectral elements. J Comput Phys 316:573–577MathSciNetCrossRefGoogle Scholar
  32. 32.
    Perronnet A (1998) Triangle, tetrahedron, pentahedron transfinite interpolations. application to the generation of C0 or G1-continuous algebraic meshes. In: Proceedings of international conference on numerical grid generation in computational field simulations, Greenwich, England, pp 467–476Google Scholar
  33. 33.
    Perronnet A (1998) Interpolation transfinie sur le triangle, le tetraèdre et le pentaèdre. Application à la création de maillages et à la condition de Dirichlet. C R Acad Sci Paris 326(I):117–122MathSciNetCrossRefGoogle Scholar
  34. 34.
    Provatidis CG (2013) A review on attempts towards CAD/CAE integration using macroelements. Comput Res 1(3):61–84Google Scholar
  35. 35.
    Rabut C (2002) On Pierre Bézier’s life and motivations. Comput Aided Des 34(7):493–510CrossRefGoogle Scholar
  36. 36.
    Sabin M (1976) The use of piecewise forms for the numerical representation of shape. Ph.D. thesis, Hungarian Academy of Sciences, Budapest, HungaryGoogle Scholar
  37. 37.
    Sablonnière P (1982) Bases de Bernstein et approximants splines. Ph.D. thesis, University of LilleGoogle Scholar
  38. 38.
    Sablonnière P (1982) Interpolation by quadratic splines on triangles and squares. Comput Ind 3:45–52CrossRefGoogle Scholar
  39. 39.
    Sablonnière P (1985) Composite finite elements of class Ck. J Comput Appl Math 12 & 13:542–550Google Scholar
  40. 40.
    Stancu D (1960) Some Bernstein polynomials in two variables and their applications. Sov Math 1:1025–1028Google Scholar
  41. 41.
    Strang G, Fix G (2008) An analysis of the finite element method, 2nd edn. Wellesley-Cambridge Press and SIAM, Wellesley MAGoogle Scholar
  42. 42.
    Stroud AH, Secrest D (1966) Gaussian quadrature formulas. Prentice-Hall, Englewood Cliffs, New JerseyGoogle Scholar
  43. 43.
    Wait R, Mitchell AR (1985) Finite element analysis and applications. Wiley, ChichesterGoogle Scholar
  44. 44.
    Xia S, Qian X (2017) Isogeometric analysis with Bézier tetrahedra. Comput Methods Appl Mech Eng 316:782–816MathSciNetCrossRefGoogle Scholar
  45. 45.
    Zieniuk E, Szerszen K (2013) Triangular Bézier surface patches in modeling shape of boundary geometry for potential problems in 3D. Eng Comput 29:517–527CrossRefGoogle Scholar
  46. 46.
    Zienkiewicz OC (1977) The finite element method. McGraw-Hill, LondonGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Mechanical EngineeringNational Technical University of AthensAthensGreece

Personalised recommendations