Advertisement

Detailed Balancing

  • Martin Feinberg
Chapter
Part of the Applied Mathematical Sciences book series (AMS, volume 202)

Abstract

Early in the 20th century, there came into being a strongly held belief, called sometimes the principle of microscopic reversibility and sometimes the principle of detailed balance [31, 57, 85, 124, 165]. In rough terms, the principle asserts that when, in a naturally occurring physical system, a collection of distinct and varied reversible molecular processes gives rise to the system’s dynamics, a state of equilibrium can result only when, for each such process, the occurrence rate of the process and the occurrence rate of its reverse are identical.

References

  1. 31.
    Bridgman, P.: Note on the principle of detailed balancing. Physical Review 31(1), 101 (1928)CrossRefGoogle Scholar
  2. 55.
    Deng, J., Jones, C., Feinberg, M., Nachman, A.: On the steady states of weakly reversible chemical reaction networks. arXiv:1111.2386 [physics, q-bio] (2011)Google Scholar
  3. 57.
    Dirac, P.A.M.: The conditions for statistical equilibrium between atoms, electrons and radiation. Proceedings of the Royal Society of London, Series A 106(739), 581–596 (1924)CrossRefGoogle Scholar
  4. 75.
    Feinberg, M.: Necessary and sufficient conditions for detailed balancing in mass action systems of arbitrary complexity. Chemical Engineering Science 44(9), 1819–1827 (1989)CrossRefGoogle Scholar
  5. 76.
    Feinberg, M.: The existence and uniqueness of steady states for a class of chemical reaction networks. Archive for Rational Mechanics and Analysis 132(4), 311–370 (1995)MathSciNetCrossRefGoogle Scholar
  6. 85.
    Fowler, R., Milne, E.: A note on the principle of detailed balancing. Proceedings of the National Academy of Sciences 11(7), 400–402 (1925)CrossRefGoogle Scholar
  7. 98.
    Greub, W.H.: Linear Algebra, 4th edn. Springer, New York (1981)zbMATHGoogle Scholar
  8. 107.
    Horn, F.: Necessary and sufficient conditions for complex balancing in chemical kinetics. Archive for Rational Mechanics and Analysis 49(3), 172–186 (1972)MathSciNetCrossRefGoogle Scholar
  9. 109.
    Horn, F., Jackson, R.: General mass action kinetics. Archive for Rational Mechanics and Analysis 47(2), 81–116 (1972)MathSciNetCrossRefGoogle Scholar
  10. 119.
    Krambeck, F.J.: The mathematical structure of chemical kinetics in homogeneous single-phase systems. Archive for Rational Mechanics and Analysis 38(5), 317–347 (1970)MathSciNetCrossRefGoogle Scholar
  11. 120.
    Lang, S.: Linear Algebra. Addison-Wesley, Reading, MA (1966)zbMATHGoogle Scholar
  12. 124.
    Lewis, G.: A new principle of equilibrium. Proceedings of the National Academy of Sciences 11(3), 179–183 (1925)CrossRefGoogle Scholar
  13. 165.
    Tolman, R.C.: The principle of microscopic reversibility. Proceedings of the National Academy of Sciences 11(7), 436–439 (1925)CrossRefGoogle Scholar
  14. 172.
    Wegscheider, R.: Über simultane gleichgewichte und die beziehungen zwischen thermodynamic und reaktionskinetik homogener systeme. Zeitschrift fur Physikalische Chemie 39, 257–303 (1902)Google Scholar
  15. 173.
    Wei, J.: Axiomatic treatment of chemical reaction systems. The Journal of Chemical Physics 36(6), 1578–1584 (1962)CrossRefGoogle Scholar
  16. 175.
    Wei, J., Prater, C.D.: The structure and analysis of complex reaction systems. Advances in Catalysis 13, 203–392 (1962)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Martin Feinberg
    • 1
  1. 1.Chemical & Biomolecular Engineering, The Ohio State UniversityColumbusUSA

Personalised recommendations