Advertisement

The Species-Reaction Graph

  • Martin Feinberg
Chapter
Part of the Applied Mathematical Sciences book series (AMS, volume 202)

Abstract

The Species-Reaction Graph is a diagrammatic representation of a reaction network that closely resembles those commonly used to depict biochemical pathways. We shall see that a network’s Species-Reaction Graph often carries an extraordinary amount of far-from-obvious information about how the network might behave. In fact, the theorems in this chapter will tell us a great deal about behavior across the entire reaction network landscape, in particular about why dull, stable behavior is more prevalent than one might expect within a mathematical macrocosm so rife with nonlinearity.

References

  1. 14.
    Banaji, M., Craciun, G.: Graph-theoretic approaches to injectivity and multiple equilibria in systems of interacting elements. Communications in Mathematical Sciences 7(4), 867–900 (2009)MathSciNetCrossRefGoogle Scholar
  2. 15.
    Banaji, M., Craciun, G.: Graph-theoretic criteria for injectivity and unique equilibria in general chemical reaction systems. Advances in Applied Mathematics 44(2), 168–184 (2010)MathSciNetCrossRefGoogle Scholar
  3. 16.
    Banaji, M., Donnell, P., Baigent, S.: P-matrix properties, injectivity, and stability in chemical reaction systems. SIAM Journal on Applied Mathematics 67(6), 1523 (2007)MathSciNetCrossRefGoogle Scholar
  4. 19.
    Beretta, E.: Stability problems of chemical networks. In: Nonlinear Differential Equations: Invariance, Stability, and Bifurcation, pp. 11–27. Academic Press, Inc. (1981)Google Scholar
  5. 20.
    Beretta, E., Vetrano, F., Solimano, F., Lazzari, C.: Some results about nonlinear chemical systems represented by trees and cycles. Bulletin of Mathematical Biology 41(5), 641–664 (1979)MathSciNetCrossRefGoogle Scholar
  6. 34.
    Chicone, C.: Ordinary Differential Equations with Applications, 2nd edn. Springer, New York (2006)zbMATHGoogle Scholar
  7. 44.
    Craciun, G.: Systems of nonlinear differential equations deriving from complex chemical reaction networks. Ph.D. thesis, The Ohio State University (2002)Google Scholar
  8. 46.
    Craciun, G., Feinberg, M.: Multiple equilibria in complex chemical reaction networks. I. The injectivity property. SIAM Journal on Applied Mathematics 65(5), 1526–1546 (2005)MathSciNetCrossRefGoogle Scholar
  9. 47.
    Craciun, G., Feinberg, M.: Multiple equilibria in complex chemical reaction networks: extensions to entrapped species models. IEE Proc. Syst. Biol 153(4), 179–186 (2006)CrossRefGoogle Scholar
  10. 48.
    Craciun, G., Feinberg, M.: Multiple equilibria in complex chemical reaction networks. II. The species-reaction graph. SIAM Journal on Applied Mathematics 66(4), 1321–1338 (2006)CrossRefGoogle Scholar
  11. 49.
    Craciun, G., Feinberg, M.: Multiple equilibria in complex chemical reaction networks: semi-open mass action systems. SIAM Journal on Applied Mathematics 70(6), 1859–1877 (2010)MathSciNetCrossRefGoogle Scholar
  12. 52.
    Craciun, G., Tang, Y., Feinberg, M.: Understanding bistability in complex enzyme-driven reaction networks. Proceedings of the National Academy of Sciences 103(23), 8697–8702 (2006)CrossRefGoogle Scholar
  13. 54.
    Delattre, P.: Evolution of Molecular Systems: Theoretical Foundations and Applications in Chemistry and Biology (in French). Maloine-Doin, Paris (1971)Google Scholar
  14. 62.
    Ellison, P., Ji, H., Knight, D., Feinberg, M.: The Chemical Reaction Network Toolbox, Version 2.3 (2014). Available at https://crnt.osu.edu
  15. 98.
    Greub, W.H.: Linear Algebra, 4th edn. Springer, New York (1981)zbMATHGoogle Scholar
  16. 104.
    Hirsch, M.W., Smale, S., Devaney, R.L.: Differential Equations, Dynamical Systems, and an Introduction to Chaos, Third Edition. Academic Press (2012)zbMATHGoogle Scholar
  17. 112.
    Hyver, C.: Valeurs propres des systèmes de transformation représentables par des graphes en arbres. Journal of Theoretical Biology 42(3), 397–409 (1973)CrossRefGoogle Scholar
  18. 113.
    Hyver, C.: Stability of transformation systems representable by tree graphs: extension to structures of biological importance. Journal of Theoretical Biology 82(2), 187–204 (1980)MathSciNetCrossRefGoogle Scholar
  19. 116.
    Joshi, B., Shiu, A.: Simplifying the Jacobian criterion for precluding multistationarity in chemical reaction networks. SIAM Journal on Applied Mathematics 72(3), 857–876 (2012)MathSciNetCrossRefGoogle Scholar
  20. 117.
    Knight, D.: Reactor behavior and its relation to chemical reaction network structure. Ph.D. thesis, The Ohio State University (2015)Google Scholar
  21. 118.
    Knight, D., Shinar, G., Feinberg, M.: Sharper graph-theoretical conditions for the stabilization of complex reaction networks. Mathematical Biosciences 262(1), 10–27 (2015)MathSciNetCrossRefGoogle Scholar
  22. 120.
    Lang, S.: Linear Algebra. Addison-Wesley, Reading, MA (1966)zbMATHGoogle Scholar
  23. 122.
    Lee, E., Salic, A., Krüger, R., Heinrich, R., Kirschner, M.W.: The roles of APC and axin derived from experimental and theoretical analysis of the Wnt pathway. PLoS Biology 1(1), e10 (2003)CrossRefGoogle Scholar
  24. 144.
    Rumschitzki, D.: On the theory of multiple steady states in isothermal CSTR’s. Ph.D. thesis, University of California, Berkeley [Work performed at the University of Rochester] (1983)Google Scholar
  25. 145.
    Rumschitzki, D., Feinberg, M.: Multiple steady states in complex isothermal CFSTRs II. Homogeneous reactors. Chemical Engineering Science 43(2), 329–337 (1988)CrossRefGoogle Scholar
  26. 147.
    Schlosser, P.M.: A graphical determination of the possibility of multiple steady states in complex isothermal CFSTRs. Ph.D. thesis, University of Rochester (1988)Google Scholar
  27. 148.
    Schlosser, P.M., Feinberg, M.: A theory of multiple steady states in isothermal homogeneous CFSTRs with many reactions. Chemical Engineering Science 49(11), 1749–1767 (1994)CrossRefGoogle Scholar
  28. 157.
    Shinar, G., Feinberg, M.: Concordant chemical reaction networks. Mathematical Biosciences 240(2), 92–113 (2012)MathSciNetCrossRefGoogle Scholar
  29. 158.
    Shinar, G., Feinberg, M.: Concordant chemical reaction networks and the species-reaction graph. Mathematical Biosciences 241(1), 1–23 (2013)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Martin Feinberg
    • 1
  1. 1.Chemical & Biomolecular Engineering, The Ohio State UniversityColumbusUSA

Personalised recommendations