Advertisement

Concordant Reaction Networks: Architectures That Promote Dull, Reliable Behavior Across Broad Kinetic Classes

  • Martin Feinberg
Chapter
Part of the Applied Mathematical Sciences book series (AMS, volume 202)

Abstract

In this chapter we’ll resume a narrative that ran through Chapters  7 and  8. There our interest was largely in the relationship between the structure of a reaction network and its capacity (or lack of it) to give rise to instabilities or multiple equilibria within a positive stoichiometric compatibility class. The principal theorems centered mostly on a reaction network’s deficiency or, in some cases, on the deficiencies of the network’s linkage classes. In this chapter, however, deficiencies will play almost no role at all.

References

  1. 9.
    Aris, R.: Introduction to the Analysis of Chemical Reactors. Prentice-Hall, Inc., Englewood Cliffs, NJ (1965)Google Scholar
  2. 12.
    Arnold, V.I.: Ordinary Differential Equations. Springer, New York (1992)Google Scholar
  3. 14.
    Banaji, M., Craciun, G.: Graph-theoretic approaches to injectivity and multiple equilibria in systems of interacting elements. Communications in Mathematical Sciences 7(4), 867–900 (2009)MathSciNetCrossRefGoogle Scholar
  4. 16.
    Banaji, M., Donnell, P., Baigent, S.: P-matrix properties, injectivity, and stability in chemical reaction systems. SIAM Journal on Applied Mathematics 67(6), 1523 (2007)MathSciNetCrossRefGoogle Scholar
  5. 44.
    Craciun, G.: Systems of nonlinear differential equations deriving from complex chemical reaction networks. Ph.D. thesis, The Ohio State University (2002)Google Scholar
  6. 46.
    Craciun, G., Feinberg, M.: Multiple equilibria in complex chemical reaction networks. I. The injectivity property. SIAM Journal on Applied Mathematics 65(5), 1526–1546 (2005)MathSciNetCrossRefGoogle Scholar
  7. 47.
    Craciun, G., Feinberg, M.: Multiple equilibria in complex chemical reaction networks: extensions to entrapped species models. IEE Proc. Syst. Biol 153(4), 179–186 (2006)CrossRefGoogle Scholar
  8. 48.
    Craciun, G., Feinberg, M.: Multiple equilibria in complex chemical reaction networks. II. The species-reaction graph. SIAM Journal on Applied Mathematics 66(4), 1321–1338 (2006)CrossRefGoogle Scholar
  9. 49.
    Craciun, G., Feinberg, M.: Multiple equilibria in complex chemical reaction networks: semi-open mass action systems. SIAM Journal on Applied Mathematics 70(6), 1859–1877 (2010)MathSciNetCrossRefGoogle Scholar
  10. 52.
    Craciun, G., Tang, Y., Feinberg, M.: Understanding bistability in complex enzyme-driven reaction networks. Proceedings of the National Academy of Sciences 103(23), 8697–8702 (2006)CrossRefGoogle Scholar
  11. 53.
    De Kepper, P., Boissonade, J.: Theoretical and experimental analysis of phase diagrams and related dynamical properties in the Belousov–Zhabotinskii system. The Journal of Chemical Physics 75(1), 189–195 (1981)CrossRefGoogle Scholar
  12. 62.
    Ellison, P., Ji, H., Knight, D., Feinberg, M.: The Chemical Reaction Network Toolbox, Version 2.3 (2014). Available at crnt.osu.edu
  13. 71.
    Feinberg, M.: Lectures on Chemical Reaction Networks (1979). Written version of lectures given at the Mathematical Research Center, University of Wisconsin, Madison, WI Available at http://crnt.osu.edu/LecturesOnReactionNetworks
  14. 84.
    Feliu, E., Wiuf, C.: Preclusion of switch behavior in networks with mass-action kinetics. Applied Mathematics and Computation 219(4), 1449–1467 (2012)MathSciNetCrossRefGoogle Scholar
  15. 89.
    Geiseler, W., Bar-Eli, K.: Bistability of the oxidation of cerous ions by bromate in a stirred flow reactor. The Journal of Physical Chemistry 85(7), 908–914 (1981)CrossRefGoogle Scholar
  16. 94.
    Golubitsky, M., Langford, W.F.: Classification and unfoldings of degenerate Hopf bifurcations. Journal of Differential Equations 41(3), 375–415 (1981)MathSciNetCrossRefGoogle Scholar
  17. 95.
    Golubitsky, M., Schaeffer, D.: Singularities and Groups in Bifurcation Theory: Volume I. Springer, New York (1984)zbMATHGoogle Scholar
  18. 97.
    Graziani, K.R., Hudson, J.L., Schmitz, R.A.: The Belousov-Zhabotinskii reaction in a continuous flow reactor. The Chemical Engineering Journal 12(1), 9–21 (1976)CrossRefGoogle Scholar
  19. 99.
    Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York (2002)zbMATHGoogle Scholar
  20. 104.
    Hirsch, M.W., Smale, S., Devaney, R.L.: Differential Equations, Dynamical Systems, and an Introduction to Chaos, Third Edition. Academic Press (2012)zbMATHGoogle Scholar
  21. 107.
    Horn, F.: Necessary and sufficient conditions for complex balancing in chemical kinetics. Archive for Rational Mechanics and Analysis 49(3), 172–186 (1972)MathSciNetCrossRefGoogle Scholar
  22. 109.
    Horn, F., Jackson, R.: General mass action kinetics. Archive for Rational Mechanics and Analysis 47(2), 81–116 (1972)MathSciNetCrossRefGoogle Scholar
  23. 111.
    Hudson, J.L., Mankin, J.C.: Chaos in the Belousov - Zhabotinskii reaction. The Journal of Chemical Physics 74(11), 6171–6177 (1981)CrossRefGoogle Scholar
  24. 115.
    Ji, H.: Uniqueness of equilibria for complex chemical reaction networks. Ph.D. thesis, The Ohio State University (2011)Google Scholar
  25. 117.
    Knight, D.: Reactor behavior and its relation to chemical reaction network structure. Ph.D. thesis, The Ohio State University (2015)Google Scholar
  26. 118.
    Knight, D., Shinar, G., Feinberg, M.: Sharper graph-theoretical conditions for the stabilization of complex reaction networks. Mathematical Biosciences 262(1), 10–27 (2015)MathSciNetCrossRefGoogle Scholar
  27. 122.
    Lee, E., Salic, A., Krüger, R., Heinrich, R., Kirschner, M.W.: The roles of APC and axin derived from experimental and theoretical analysis of the Wnt pathway. PLoS Biology 1(1), e10 (2003)CrossRefGoogle Scholar
  28. 123.
    Leib, T., Rumschitzki, D., Feinberg, M.: Multiple steady states in complex isothermal CFSTRs. I: General considerations. Chemical Engineering Science 43(2), 321–328 (1988)Google Scholar
  29. 138.
    Rawlings, J., Ekerdt, J.: Chemical Reactor Analysis and Design Fundamentals, 2nd edn. Nob Hill Publishing, Madison, Wisconsin (2013)Google Scholar
  30. 141.
    Reidl, J., Borowski, P., Sensse, A., Starke, J., Zapotocky, M., Eiswirth, M.: Model of calcium oscillations due to negative feedback in olfactory cilia. Biophysical Journal 90(4), 1147–1155 (2006)CrossRefGoogle Scholar
  31. 144.
    Rumschitzki, D.: On the theory of multiple steady states in isothermal CSTR’s. Ph.D. thesis, University of California, Berkeley [Work performed at the University of Rochester] (1983)Google Scholar
  32. 145.
    Rumschitzki, D., Feinberg, M.: Multiple steady states in complex isothermal CFSTRs II. Homogeneous reactors. Chemical Engineering Science 43(2), 329–337 (1988)CrossRefGoogle Scholar
  33. 147.
    Schlosser, P.M.: A graphical determination of the possibility of multiple steady states in complex isothermal CFSTRs. Ph.D. thesis, University of Rochester (1988)Google Scholar
  34. 148.
    Schlosser, P.M., Feinberg, M.: A theory of multiple steady states in isothermal homogeneous CFSTRs with many reactions. Chemical Engineering Science 49(11), 1749–1767 (1994)CrossRefGoogle Scholar
  35. 149.
    Schmitz, R.A., Graziani, K.R., Hudson, J.L.: Experimental evidence of chaotic states in the Belousov-Zhabotinskii reaction. The Journal of Chemical Physics 67(7), 3040–3044 (1977)CrossRefGoogle Scholar
  36. 151.
    Seydel, R.: Practical Bifurcation and Stability Analysis, 3rd edn. Springer, New York (2009)zbMATHGoogle Scholar
  37. 157.
    Shinar, G., Feinberg, M.: Concordant chemical reaction networks. Mathematical Biosciences 240(2), 92–113 (2012)MathSciNetCrossRefGoogle Scholar
  38. 158.
    Shinar, G., Feinberg, M.: Concordant chemical reaction networks and the species-reaction graph. Mathematical Biosciences 241(1), 1–23 (2013)MathSciNetCrossRefGoogle Scholar
  39. 164.
    Strogatz, S.H.: Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering, Second Edition. Westview Press (2014)zbMATHGoogle Scholar
  40. 166.
    Tyson, J., Kauffman, S.: Control of mitosis by a continuous biochemical oscillation: synchronization; spatially inhomogeneous oscillations. Journal of Mathematical Biology 1(4), 289–310 (1975)CrossRefGoogle Scholar
  41. 177.
    Wiuf, C., Feliu, E.: Power-law kinetics and determinant criteria for the preclusion of multistationarity in networks of interacting species. SIAM Journal on Applied Dynamical Systems 12(4), 1685–1721 (2013)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Martin Feinberg
    • 1
  1. 1.Chemical & Biomolecular Engineering, The Ohio State UniversityColumbusUSA

Personalised recommendations