Timed Memory in Resource-Bounded Agents

  • Stefania Costantini
  • Andrea FormisanoEmail author
  • Valentina Pitoni
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11298)


In intelligent agents memory plays a crucial role in the choice of future course of action, as it is progressively formed by means of agent’s interactions with the external environment. Previous work exists in logic concerning formalization of reasoning on the formation of beliefs in non-omniscient agents. We address an aspect which has been hardly considered so far, i.e., the notion of “explicit time”, by introducing timed beliefs, timed inferences, by means of temporal logic operator on time intervals.


  1. 1.
    Logie, R.H.: Visuo-Spatial Working Memory. Essays in Cognitive Psychology. Psychology Press, Hove (1994)Google Scholar
  2. 2.
    Pearson, D., Logie, R.H.: Effect of stimulus modality and working memory load on menthal synthesis performance. Imagin. Cogn. Pers. 23(2–3), 183–191 (2004)Google Scholar
  3. 3.
    Gero, J.S., Peng, W.: Understanding behaviors of a constructive memory agent: a Markov chain analysis. Knowl.-Based Syst. 22(8), 610–621 (2009)CrossRefGoogle Scholar
  4. 4.
    Balbiani, P., Fernández-Duque, D., Lorini, E.: A logical theory of belief dynamics for resource-bounded agents. In: Proceedings of AAMAS 2016, pp. 644–652. ACM (2016)Google Scholar
  5. 5.
    Fagin, R., Halpern, J.Y.: Belief, awareness, and limited reasoning. Artif. Intell. 34(1), 39–76 (1987)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Ågotnes, T., Alechina, N.: A logic for reasoning about knowledge of unawareness. J. Log. Lang. Inf. 23(2), 197–217 (2014)MathSciNetCrossRefGoogle Scholar
  7. 7.
    van Ditmarsch, H., French, T.: Semantics for knowledge and change of awareness. J. Log., Lang. Inf. 23(2), 169–195 (2014)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Alechina, N., Logan, B., Whitsey, M.: A complete and decidable logic for resource-bounded agents. In: Proceedings of AAMAS 2004, pp. 606–613. IEEE Computer Society (2004)Google Scholar
  9. 9.
    Grant, J., Kraus, S., Perlis, D.: A logic for characterizing multiple bounded agents. Auton. Agents Multi-Agent Syst. 3(4), 351–387 (2000)CrossRefGoogle Scholar
  10. 10.
    Laird, J.E., Lebiere, C., Rosenbloom, P.S.: A standard model of the mind: toward a common computational framework across artificial intelligence, cognitive science, neuroscience, and robotics. AI Mag. 38(4), 13–26 (2017)CrossRefGoogle Scholar
  11. 11.
    Bansal, A.K., Ramohanarao, K., Rao, A.: Distributed storage of replicated beliefs to facilitate recovery of distributed intelligent agents. In: Singh, M.P., Rao, A., Wooldridge, M.J. (eds.) ATAL 1997. LNCS, vol. 1365, pp. 77–91. Springer, Heidelberg (1997). Scholar
  12. 12.
    Omicini, A., Ricci, A., Viroli, M.: Timed environment for web agents. Web Intell. Agent Syst. 5(2), 161–175 (2007)Google Scholar
  13. 13.
    Micucci, D., Oldani, M., Tisato, F.: Time-aware multi agent systems. In: Weyns, D., Holvoet, T. (eds.) Multiagent Systems and Software Architecture, Proceedings of the Special Track at Net. ObjectDays, pp. 71–78. Katholieke Universiteit Leuven, Belgium (2006)Google Scholar
  14. 14.
    Chesani, F., Mello, P., Montali, M., Torroni, P.: Monitoring time-aware commitments within agent-based simulation environments. Cybern. Syst. 42(7), 546–566 (2011)CrossRefGoogle Scholar
  15. 15.
    van Benthem, J.: The Logic of Time - A Model-theoretic Investigation into the Varieties of Temporal Ontology and Temporal Discourse, vol. 156. Synthese library and Kluwer, Boston (1991)zbMATHGoogle Scholar
  16. 16.
    Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time Syst. 2(4), 255–299 (1990)CrossRefGoogle Scholar
  17. 17.
    Halpern, J.Y., Shoham, Y.: A propositional modal logic of time intervals. J. ACM 38(4), 935–962 (1991)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Balbiani, P., Goranko, V., Sciavicco, G.: Two-sorted point-interval temporal logics. Electr. Notes Theor. Comput. Sci. 278, 31–45 (2011)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Henzinger, T.A., Manna, Z., Pnueli, A.: What good are digital clocks? In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 545–558. Springer, Heidelberg (1992). Scholar
  20. 20.
    Ouaknine, J., Worrell, J.: Some recent results in metric temporal logic. In: Cassez, F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215, pp. 1–13. Springer, Heidelberg (2008). Scholar
  21. 21.
    Areces, C., Blackburn, P., Marx, M.: Hybrid logics: characterization, interpolation and complexity. J. Symb. Log. 66(3), 977–1010 (2001)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Engelfriet, J.: Minimal temporal epistemic logic. Notre Dame J. Form. Log. 37(2), 233–259 (1996)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Hirshfeld, Y., Rabinovich, A.M.: Logics for real time: decidability and complexity. Fundam. Inform. 62(1), 1–28 (2004)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Stefania Costantini
    • 1
  • Andrea Formisano
    • 2
    Email author
  • Valentina Pitoni
    • 1
  1. 1.DISIM – Università di L’AquilaL’AquilaItaly
  2. 2.GNCS-INdAM and DMI – Università di PerugiaPerugiaItaly

Personalised recommendations