Advertisement

A Tableau Calculus for a Multi-modal Logic of Dishonesty

  • Sanja Pavlović
  • Hans Tompits
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11298)

Abstract

In recent years, several approaches for formalising dishonest agents have been proposed in the artificial-intelligence literature. In particular, many of these approaches are based on a modal-logic setting. A prominent specimen of such a formalism is the multi-modal logic \(\mathsf {BIC}\), proposed by Sakama, Caminada, and Herzig, where the name “\(\mathsf {BIC}\)” stands for belief, intention, and communication. In their work, Sakama et al. introduce a Kripke semantics for \(\mathsf {BIC}\) and provide a corresponding Hilbert-style axiomatisation. In this paper, we complement this investigation by introducing a tableau calculus for \(\mathsf {BIC}\). Our approach is based on the single-step tableau method, an important proof method for automated deduction, originally proposed by Massacci for certain normal modal logics and subsequently elaborated by Goré. We provide soundness and completeness proofs, extending methods of Goré.

References

  1. 1.
    Castelfranchi, C.: Artificial liars: Why computers will (necessarily) deceive us and each other. Ethics Inf. Technol. 2(2), 113–119 (2000)CrossRefGoogle Scholar
  2. 2.
    Firozabadi, B.S., Tan, Y.H., Lee, R.M.: Formal definitions of fraud. In: Norms, Logics and Information Systems, pp. 275–288 (1998)Google Scholar
  3. 3.
    Fitting, M.: Tableau methods of proof for modal logics. Notre Dame J. Form. Log. 13(2), 237–247 (1972)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Fitting, M.: Proof Methods for Modal and Intuitionistic Logics, vol. 169. Springer, Dordrecht (1983).  https://doi.org/10.1007/978-94-017-2794-5CrossRefzbMATHGoogle Scholar
  5. 5.
    Goré, R.: Tableau methods for modal and temporal logics. In: D’Agostino, M., Gabbay, D.M., Hähnle, R., Posegga, J. (eds.) Handbook of Tableau Methods, pp. 297–396. Springer, Dordrecht (1999).  https://doi.org/10.1007/978-94-017-1754-0_6CrossRefzbMATHGoogle Scholar
  6. 6.
    Massacci, F.: Strongly analytic tableaux for normal modal logics. In: Bundy, A. (ed.) CADE 1994. LNCS, vol. 814, pp. 723–737. Springer, Heidelberg (1994).  https://doi.org/10.1007/3-540-58156-1_52CrossRefGoogle Scholar
  7. 7.
    Massacci, F.: Single step tableaux for modal logics. J. Autom. Reason. 24(3), 319–364 (2000)MathSciNetCrossRefGoogle Scholar
  8. 8.
    O’Neill, B.: A formal system for understanding lies and deceit. In: Jerusalem Conference on Biblical Economics (2003)Google Scholar
  9. 9.
    Pan, Y., Cao, C., Sui, Y.: A formal system for lies based on speech acts in multi-agent systems. In: Proceedings of the First IEEE Symposium on Foundations of Computational Intelligence, FOCI 2007, pp. 228–234. IEEE (2007)Google Scholar
  10. 10.
    Pavlović, S.: A tableau calculus for a multi-modal logic of dishonesty. Bachelor’s thesis, Technische Universität Wien, Institute for Logic and Computation (2018)Google Scholar
  11. 11.
    Sakama, C.: Dishonest reasoning by abduction. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence, IJCAI 2011, pp. 1063–1064. IJCAI/AAAI (2011)Google Scholar
  12. 12.
    Sakama, C.: Dishonest arguments in debate games. In: Proceedings of the Fourth International Conference on Computational Models of Argument, COMMA 2012. Frontiers in Artificial Intelligence and Applications, vol. 245, pp. 177–184. IOS Press (2012)Google Scholar
  13. 13.
    Sakama, C.: Learning dishonesty. In: Riguzzi, F., Železný, F. (eds.) ILP 2012. LNCS, vol. 7842, pp. 225–240. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38812-5_16CrossRefGoogle Scholar
  14. 14.
    Sakama, C., Caminada, M., Herzig, A.: A formal account of dishonesty. Log. J. IGPL 23(2), 259–294 (2015)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Sakama, C., Inoue, K.: Abduction, conversational implicature and misleading in human dialogues. Log. J. IGPL 24(4), 526–541 (2016)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Smullyan, R.M.: A unifying principle in quantification theory. Proc. Natl. Acad. Sci. 49(6), 828–832 (1963)CrossRefGoogle Scholar
  17. 17.
    Tzouvaras, A.: Logic of knowledge and utterance and the liar. J. Philos. Log. 27(1), 85–108 (1998)MathSciNetCrossRefGoogle Scholar
  18. 18.
    van Ditmarsch, H., van Eijck, J., Sietsma, F., Wang, Y.: On the logic of lying. In: van Eijck, J., Verbrugge, R. (eds.) Games, Actions and Social Software. LNCS, vol. 7010, pp. 41–72. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-29326-9_4CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute of Logic and Computation, Knowledge-Based Systems Group E192-03Technische Universität WienViennaAustria

Personalised recommendations