Advertisement

A Generalized Framework for Ontology-Based Data Access

  • Elena Botoeva
  • Diego Calvanese
  • Benjamin Cogrel
  • Julien Corman
  • Guohui Xiao
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11298)

Abstract

The database (DB) landscape has been significantly diversified during the last decade, resulting in the emergence of a variety of non-relational (also called NoSQL) DBs, e.g., xml and json-document DBs, key-value stores, and graph DBs. To enable access to such data, we generalize the well-known ontology-based data access (OBDA) framework so as to allow for querying arbitrary data sources using sparql. We propose an architecture for a generalized OBDA system implementing the virtual approach. Then, to investigate feasibility of OBDA over non-relational DBs, we compare an implementation of an OBDA system over MongoDB, a popular json-document DB, with a triple store.

References

  1. 1.
    Araujo, T.H.D., Agena, B.T., Braghetto, K.R., Wassermann, R.: OntoMongo - ontology-based data access for NoSQL. In: Proceedings of the OntoBras. CEUR, ceur-ws.org, vol. 1908 (2017)Google Scholar
  2. 2.
    Bizer, C., Schultz, A.: The Berlin SPARQL benchmark. Int. J. Semant. Web Inf. Syst. 5(2), 1–24 (2009)CrossRefGoogle Scholar
  3. 3.
    Botoeva, E., Calvanese, D., Cogrel, B., Xiao, G.: Expressivity and complexity of MongoDB queries. In: Proceedings of the ICDT. LIPIcs, vol. 98, pp. 9:1–9:22 (2018)Google Scholar
  4. 4.
    Calvanese, D., et al.: Ontop: answering SPARQL queries over relational databases. Semant. Web J. 8(3), 471–487 (2017)CrossRefGoogle Scholar
  5. 5.
    Calvanese, D., Liuzzo, P., Mosca, A., Remesal, J., Rezk, M., Rull, G.: Ontology-based data integration in EPNet: production and distribution of food during the Roman Empire. Eng. Appl. Artif. Intell. 51, 212–229 (2016)CrossRefGoogle Scholar
  6. 6.
    Chortaras, A., Stamou, G.: D2RML: Integrating heterogeneous data and web services into custom RDF graphs. In: Proceedings of the LDOW. CEUR, ceur-ws.org, vol. 2073 (2018)Google Scholar
  7. 7.
    Das, S., Sundara, S., Cyganiak, R.: R2RML: RDB to RDF mapping language. W3C Recommendation (2012). http://www.w3.org/TR/r2rml/
  8. 8.
    Dimou, A., Vander Sande, M., Colpaert, P., Verborgh, R., Mannens, E., Van de Walle, R.: RML: a generic language for integrated RDF mappings of heterogeneous data. In: Proceedings of the LDOW. CEUR, ceur-ws.org, vol. 1184 (2014)Google Scholar
  9. 9.
    Erling, O., Mikhailov, I.: RDF support in the Virtuoso DBMS. In: Pellegrini, T., Auer, S., Tochtermann, K., Schaffert, S. (eds.) Networked Knowledge - Networked Media. SCI, vol. 221. Springer, Berlin (2009).  https://doi.org/10.1007/978-3-642-02184-8_2CrossRefGoogle Scholar
  10. 10.
    Giese, M., et al.: Optique: zooming in on big data. IEEE Comput. 48(3), 60–67 (2015)CrossRefGoogle Scholar
  11. 11.
    Harris, S., Seaborne, A.: SPARQL 1.1 query language. W3C Recommendation (2013). http://www.w3.org/TR/sparql11-query
  12. 12.
    Kontchakov, R., Rezk, M., Rodríguez-Muro, M., Xiao, G., Zakharyaschev, M.: Answering SPARQL queries over databases under OWL 2 QL entailment regime. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8796, pp. 552–567. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11964-9_35CrossRefGoogle Scholar
  13. 13.
    Lenzerini, M.: Data integration: a theoretical perspective. In: Proceedings of the PODS (2002)Google Scholar
  14. 14.
    Michel, F., Djimenou, L., Faron-Zucker, C., Montagnat, J.: Translation of relational and non-relational databases into RDF with xR2RML. In: Proceedings of the WEBIST, pp. 443–454 (2015)Google Scholar
  15. 15.
    Motik, B., Fokoue, A., Horrocks, I., Wu, Z., Lutz, C., Cuenca Grau, B.: OWL web ontology language profiles. W3C Recommendation (2009). http://www.w3.org/TR/owl-profiles/
  16. 16.
    Ong, K.W., Papakonstantinou, Y., Vernoux, R.: The SQL++ query language: configurable, unifying and semi-structured. CoRR Technical Report abs/1405.3631, arXiv.org (2014)
  17. 17.
    Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ACM TODS 34(3), 16:1–16:45 (2009)CrossRefGoogle Scholar
  18. 18.
    Rodríguez-Muro, M., Kontchakov, R., Zakharyaschev, M.: Ontology-based data access: Ontop of databases. In: Alani, H., et al. (eds.) ISWC 2013. LNCS, vol. 8218, pp. 558–573. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-41335-3_35CrossRefGoogle Scholar
  19. 19.
    Roth, M.T., Schwarz, P.M.: Don’t scrap it, wrap it! A wrapper architecture for legacy data sources. In: Proceedings of the VLDB, pp. 266–275. Morgan Kaufmann (1997)Google Scholar
  20. 20.
    Sequeda, J.F., Arenas, M., Miranker, D.P.: OBDA: query rewriting or materialization? In practice, both!. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8796, pp. 535–551. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11964-9_34CrossRefGoogle Scholar
  21. 21.
    Slepicka, J., Yin, C., Szekely, P.A., Knoblock, C.A.: KR2RML: an alternative interpretation of R2RML for heterogenous sources. In: Proceedings of the 6th International Workshop on Consuming Linked Data (COLD), co-located with ISWC. CEUR, ceur-ws.org, vol. 1426 (2015)Google Scholar
  22. 22.
    Xiao, G., et al.: Ontology-based data access: a survey. In: Proceedings of the IJCAI. AAAI Press (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Elena Botoeva
    • 1
  • Diego Calvanese
    • 1
  • Benjamin Cogrel
    • 1
  • Julien Corman
    • 1
  • Guohui Xiao
    • 1
  1. 1.Faculty of Computer ScienceFree University of Bozen-BolzanoBolzanoItaly

Personalised recommendations