Artificial Intelligence and WebGIS for Disaster and Emergency Management

  • Rifaat AbdallaEmail author
  • Marwa Esmail
Part of the Advances in Science, Technology & Innovation book series (ASTI)


GIS problems are often subject to what is known as curse of dimensionality, which means that the state space grows rapidly when the number of parameters increases. However, the use of intelligent algorithms reduces considerably the size of the state space and helps to quickly find the optimal configurations.


  1. Ashish, N., Eguchi, R., Hegde, R., et al. (2007). Situational awareness technologies for disaster response. In H. Chen, et al. (Ed.), Terrorism informatics: Knowledge management and data mining for homeland security.Google Scholar
  2. Atkinson, P., & Tatnall, A. (1997). Neural networks in remote sensing. International Journal of Remote Sensing, 18(4), 699–709.CrossRefGoogle Scholar
  3. Beres, M., Foresti, L., Tapia, R., & Kanevski, M. (2008). Frost risk mapping using neural networks and GIS decision models. Geophysical Research Abstracts, 10 (2008).Google Scholar
  4. Bischof, H., Schneider, W., & Pinz, A. J. (1992). Multispectral classification of landsat images using neural networks. IEEE Transactions on Geosciences and Remote Sensing, 30(3), 482–490.CrossRefGoogle Scholar
  5. Bloodsworth, P., & Greenwood, S. (2005). COSMOA an ontology-centric multi-agent systems for coordinating medical responses to large-scale disasters. In M. Lytras (Ed.), Semantic Web Factbook—2005 Edition, 1st edn. AIS SIGSEMIS and Open Research Society Publications. ISSN: 1556-2301, May 2006.Google Scholar
  6. Brondino, N. C. M., & da Silva, A. N. R. (1999, September). Combining artificial neural networks and GIS for land valuation process. Paper presented at the 6th International Conference on CUPUM, Venezia, Italy, 8–11 September.Google Scholar
  7. Burrough, P. A. (1986). Principles of geographic information systems for land resource assessment. Monographs on Soil and Resources Survey No. 12. New York: Oxford Science Publications.CrossRefGoogle Scholar
  8. Civco, D. L. (1993). Artificial neural networks for landcover classification and mapping. International Journal of Geographical Information Systems, 7(2), 173–186.CrossRefGoogle Scholar
  9. Collins, C. B., Beck, J. M., Bridges, S. M., Rushing, J. A., & Graves, S. J. (2017). Deep learning for multisensor image resolution enhancement (pp. 37–44). ACM Press.
  10. Dantas, A., Yamamoto, K., Lamar, M. V., Yamashita, Y. (2000). Neural network for travel demand forecast using GIS and remote sensing. In Proceeding of international joint conference on neural networks (IJCNN’00) (vol. 4).Google Scholar
  11. German, G., & Gahegan, M. (1996). Neural network architectures for the classification of temporal image sequences. Computers & Geosciences, 22(9), 969–979.CrossRefGoogle Scholar
  12. Hall, G. B., & Morgan, (2001). Spatial decision support system: Spatial aspect project. Canada: University of Waterloo. Unpublished.Google Scholar
  13. Kohonen, T. (1997). Self-organizing maps. Berlin: Springer.CrossRefGoogle Scholar
  14. Lees, B. G., & Ritman, K. (1991). Decision tree and rule induction approach to integration of remotely sensed and GIS data in mapping vegetation in disturbed or hilly environments. Environmental Management, 15, 823–831.CrossRefGoogle Scholar
  15. Li, H., Liu, J., & Zhou, X. (2018). Intelligent map reader: A framework for topographic map understanding with deep learning and gazetteer. IEEE Access, 6, 25363–25376. Scholar
  16. Lin, Y., Chiang, Y.-Y., Pan, F., Stripelis, D., Ambite, J. L., Eckel, S. P., & Habre, R. (2017). Mining public datasets for modeling intra-city PM2.5 concentrations at a fine spatial resolution. In Proceedings of the 25th ACM SIGSPATIAL international conference on advances in geographic information systems (pp. 1–10). Los Angeles Area, CA.Google Scholar
  17. Mann, S., & Benwell, G. L. (1996). The integration of ecological, neural and spatial modeling for monitoring and prediction for semi-arid landscapes. Computers & Geosciences, 22(9), 1003–1012.CrossRefGoogle Scholar
  18. Massaguer, D., Balasubramanian, V., Mehrotra, S., & Venkatasubramanian, N. (2006). Multiagent simulation of disaster response. In AAMAS’06, 8–12 May 2006, Japan.Google Scholar
  19. Mccloy, K. R. (2006). Resource management information systems: Remote sensing, GIS and modelling, 2nd edn. CRC Press.Google Scholar
  20. Moon, T., & Hagishima, H. (2001, July). Integrated simulation system of GIS and ANN for land price appraisal. Paper presented at the 7th International Conference on CUPUM, University of Hawaii, Honolulu, 18–21 July.Google Scholar
  21. Openshaw, S., & Openshaw, C. (1997). Artificial intelligence in geography. Chichester: Wiley.Google Scholar
  22. Pijanowski, B. C., Brown, D. G., Shellito, B. A., & Manik, G. A. (2002). Using neural networks and GIS to forecast land use changes: A land transformation model. Computers, Environment and Urban Systems, 26(6), 553–575.CrossRefGoogle Scholar
  23. Schurr, N., Marecki, J., Kasinadhuni, N., Tambe, M., Lewis, J. P., & Scerri, P. (2005). The DEFACTO system for human omnipresence to coordinate agent teams: The future of disaster response. In AAMAS’05. Utrecht, Netherlands.Google Scholar
  24. Shah, B., & Choset, H. (2003). In C. H. Lee, & Y. K. Kwak (Eds.), Survey on urban search and rescue robotics. Pittsburgh, PA: CMU, 15213.Google Scholar
  25. Thurston, J. (2002). GIS & artificial neural networks: Does your GIS think? GIS Vision Magazine, February 2002.Google Scholar
  26. VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y. (2018). emerging trends in geospatial artificial intelligence (geoAI): Potential applications for environmental epidemiology. Environmental Health, 17(1).
  27. Wang, F. (1994). The use of artificial neural networks in a geographical information system for agricultural land-suitability assessment. Environment and Planning, 26, 265–284.CrossRefGoogle Scholar
  28. Yanar, T. A., & Akyürek, Z. (2006). The enhancement of the cell-based GIS analyses with fuzzy processing capabilities. Information Sciences, 176, 1067–1085.CrossRefGoogle Scholar
  29. Yen, J., & Langari, R. (1999). Fuzzy logic: Intelligence, control, and information. Prentice Hall.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Earth SciencesCollege of Science, Sultan Qaboos UniversityMuscatOman
  2. 2.Cairo UniversityGizaEgypt

Personalised recommendations