Advertisement

WebGIS Techniques and Applications

  • Rifaat Abdalla
  • Marwa Esmail
Chapter
Part of the Advances in Science, Technology & Innovation book series (ASTI)

Abstract

A WebGIS is a computer software and hardware configuration that allows the sharing of maps, spatial data, and geographic processing operations throughout one’s own network and beyond using common Web communications protocols such as HTTP and WebSockets.

References

  1. Alberico, I., Petrosino, P., & Lirer, L. (2011). Volcanic hazard and risk assessment in a multi-source volcanic area: The example of Napoli City (Southern Italy). Natural Hazards and Earth System Sciences, 11, 1057–1070.  https://doi.org/10.5194/nhess-11-1057-2011.CrossRefGoogle Scholar
  2. Alesheikh, A. A., Helali, H., & Behroz, H. A. (2002). WebGIS: Technologies and its applications. In ISPRS Technical Commission IV Symposium, Ottawa, Canada, Vol. 15, pp. 1–9.Google Scholar
  3. Alexander, D. (1993). Natural disasters. New York: Chapman & Hall.Google Scholar
  4. Bertino, E., Thuraisingham, B., Gertz, M., & Damiani, M. L. (2008). Security and privacy for geospatial data: Concepts and research directions. In Proceedings of the SIGSPATIAL ACM GIS 2008 International Workshop on Security and Privacy in GIS and LBS (pp. 6–19). ACM, New York, NY, USA.  https://doi.org/10.1145/1503402.1503406.
  5. Brown, G., & Weber, D. (2011). Public participation GIS: A new method for national park planning. Landscape and Urban Planning, 102(1), 1–15.  https://doi.org/10.1016/j.landurbplan.2011.03.003.CrossRefGoogle Scholar
  6. Cavaco, R., Sequeira, R., Araújo, M., & Calejo, M. (2010). Rapid GIS development: A model-based approach focused on interoperability. In 13th AGILE International Conference on Geographic Information Science, Guimarães, Portugal, pp. 1–5.Google Scholar
  7. Douglas, J., Uslaender, T., Schimak, G., Esteban, J. F., & Denzer, R. (2008). An open distributed architecture for sensor networks for risk management. Sensors, 8, 1755–1773.  https://doi.org/10.3390/s8031755.CrossRefGoogle Scholar
  8. Dragićević, S. (2004). The potential of web-based GIS. Journal of Geographical Systems, 6(2), 79–81.  https://doi.org/10.1007/s10109-004-0133-4.CrossRefGoogle Scholar
  9. Escalona, M. J., Torres-zenteno, A., Gutierrez, J., Martins, E., Torres, R. S., & Baranauskas, M. C. C. (2008). A development process for web geographic information system a case of study. Requirements Engineering.Google Scholar
  10. Felpeto, A., Marti, J., & Ortiz, R. (2007). Automatic GIS-based system for volcanic hazard assessment. Journal of Volcanology and Geothermal Research, 166, 106–116.  https://doi.org/10.1016/j.jvolgeores.2007.07.008.CrossRefGoogle Scholar
  11. Goodchild, M. F. (2007). Citizens as sensors: The world of volunteered geography. GeoJournal, 69(4), 211–221.CrossRefGoogle Scholar
  12. Haklay, M. (2013). Neogeography and the delusion of democratization. Environment and Planning A, 45(1), 55–69.  https://doi.org/10.1068/a45184.CrossRefGoogle Scholar
  13. Katona, Z., & Molnár, A. (2005). Magyarország térinformatikai szőlőültetvény-nyilvántartó rendszerének -VINGIS- kialakítása. Geodézia és Kartográfia, 57(10), 24–27 (in Hungarian).Google Scholar
  14. Labazuy, P., Gouhier, M., Harris, A., Guehenneux, Y., Hervo, M., Berges, J. C., et al. (2012). Near real-time monitoring of the April–May 2010 Eyjafjallajokull ash cloud: An example of a web-based, satellite data driven, reporting system. International Journal of Environment and Pollution, 48, 262–272.  https://doi.org/10.1504/ijep.2012.049673.CrossRefGoogle Scholar
  15. Liu, K. (2000). Semiotics in information systems engineering. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  16. Marzocchi, W., & Woo, G. (2009). Principles of volcanic risk metrics: Theory and the case study of Mount Vesuvius and Campi Flegrei, Italy. Journal of Geophysical Research: Solid Earth, 114, B03213.  https://doi.org/10.1029/2008jb005908.
  17. Montoya-Morales, A. (2002). Urban disaster management: A case study of earthquake risk assessment in Cartago, Costa Rica. Enschede, The Netherlands: International Institute for Geo-Information Science and Earth Observation (ITC).Google Scholar
  18. Müller, M., Vorogushyn, S., Maier, P., Thieken, A. H., Petrow, T., Kron, A., et al. (2006). CEDIM risk explorer—A map server solution in the project “Risk Map Germany”. Natural Hazards and Earth System Science, 6, 711–720.  https://doi.org/10.5194/nhess-6-711-2006.CrossRefGoogle Scholar
  19. Pareschi, M. T., Cavarra, L., Favalli, M., Giannini, F., & Meriggi, A. (2000). GIS and volcanic risk management. Natural Hazards, 21, 361–379.  https://doi.org/10.1023/a:1008016304797.CrossRefGoogle Scholar
  20. Peters, D. (2006). System design strategies. California: ESRI.Google Scholar
  21. Plewe, B. (1997). GIS online: Information retrieval, mapping, and the internet (1st ed.). Santa Fe, NM: OnWord Press.Google Scholar
  22. Savvaidis, P., Sotiriadis, A., Valadaki, A., Doukas, I. D., Tziavos, I. N., Kiratzi, A., et al. (2005). Use of Web-based GIS for the evaluation of earthquake damage to the built environment. Presented at the “DPPGIS 2005” International Conference, Pardubice, Czech Republic.Google Scholar
  23. Savvaidis, P., Theilen-Willige, B., & Neuhäuser, B. (2006). Guidelines for a landslide hazard information system, OASYS deliverable (p. 84). Vienna.Google Scholar
  24. Siki, Z. (2009). Produktív környezetben használt, nyílt forráskódú komplex térinformatikai megoldások. In CASCADOSS műhelymunka tanácskozás és GRASS tanfolyam, Szeged (in Hungarian).Google Scholar
  25. Steiniger, S., & Hunter, A. J. S. (2013). The 2012 free and open source GIS software map—A guide to facilitate research, development, and adoption. Computers, Environment and Urban Systems, 39, 136–150.CrossRefGoogle Scholar
  26. Tait, S., & Ferrucci, F. (2013). A real-time, space borne volcano observatory to support decision making during eruptive crises: European volcano observatory space services. In Uksim-Amss 15th International Conference on Computer Modelling and Simulation (Uksim 2013), pp. 283–289.  https://doi.org/10.1109/uksim.2013.121.
  27. Thierry, P., Stieltjes, L., Kouokam, E., Ngueya, P., & Salley, P. M. (2008). Multi-hazard risk mapping and assessment on an active volcano: The GRINP project at Mount Cameroon. Natural Hazards, 45, 429–456.  https://doi.org/10.1007/s11069-007-9177-3.CrossRefGoogle Scholar
  28. Torre, J. (2005). Report of existing GIS standards and software—Deliverable 3.6.1, Core GIS 6.1.ices-SYNTHESYS NA-D 3.6 report, 11.Google Scholar
  29. Turner, A. (2006). Introduction to neogeography. USA: O’Reilly Media, Inc.Google Scholar
  30. van Oosteron, P., Zlatanova, S., & Fendel, E. M. (Eds.). (2005). Geo-information for disaster management. Berlin: Springer.Google Scholar
  31. Vicari, A., Bilotta, G., Bonfiglio, S., Cappello, A., Ganci, G., Herault, A., et al. (2011). LAV@HAZARD: A web-GIS interface for volcanic hazard assessment. Annales Geophysicae, 54, 662–670.  https://doi.org/10.4401/ag-5347.CrossRefGoogle Scholar
  32. Waugh, W. L. (1995). Geographic information-systems—The case of disaster management. Social Science Computer Review, 13, 422–431.CrossRefGoogle Scholar
  33. Yang, C., Wong, D. W., Yang, R., Kafatos, M., & Li, Q. (2005). Performance-improving techniques in web-based GIS. International Journal of Geographical Information Science, 19(3), 319–342.  https://doi.org/10.1080/13658810412331280202.CrossRefGoogle Scholar
  34. Zeiler, M. (1999). Modelling our world, the ESRI guide to geodatabase design. California: ESRI.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Earth SciencesCollege of Science, Sultan Qaboos UniversityMuscatOman
  2. 2.Cairo UniversityGizaEgypt

Personalised recommendations