Advertisement

Decision Support Systems and Artificial Intelligence in Supply Chain Risk Management

  • George BaryannisEmail author
  • Samir Dani
  • Sahar Validi
  • Grigoris Antoniou
Chapter
Part of the Springer Series in Supply Chain Management book series (SSSCM, volume 7)

Abstract

This chapter considers the importance of decision support systems for supply chain risk management (SCRM). The first part provides an overview of the different operations research techniques and methodologies for decision making for managing risks, focusing on multiple-criteria decision analysis methods and mathematical programming. The second part is devoted to artificial intelligence (AI) techniques which have been applied in the SCRM domain to analyse data and make decisions regarding possible risks. These include Petri nets, multi-agent systems, automated reasoning and machine learning. The chapter concludes with a discussion of potential ways in which future decision support systems for SCRM can benefit from recent advances in AI research.

References

  1. Amid, A., Ghodsypour, S. H., & O’Brien, C. (2009). A weighted additive fuzzy multiobjective model for the supplier selection problem under price breaks in a supply chain. International Journal of Production Economics, 121(2), 323–332.  https://doi.org/10.1016/j.ijpe.2007.02.040.CrossRefGoogle Scholar
  2. Asar, A., Meng, C. Z., Caudill, R. J., & Asar, S. (2006). Modelling risks in supply chains using Petri net approach. International Journal of Services Operations and Informatics, 1(3), 273–285.  https://doi.org/10.1504/ijsoi.2006.011016.CrossRefGoogle Scholar
  3. Auswirkungen des Brexits auf die Agrar- und Lebensmittelexporte Irlands in das Vereinigte Königreich. EuroChoices, 16(2), 26–32.  https://doi.org/10.1111/1746-692x.12160.CrossRefGoogle Scholar
  4. Azadeh, A., & Alem, S. M. (2010). A flexible deterministic, stochastic and fuzzy data envelopment analysis approach for supply chain risk and vendor selection problem: Simulation analysis. Expert Systems with Applications, 37(12), 7438–7448.  https://doi.org/10.1016/j.eswa.2010.04.022.CrossRefGoogle Scholar
  5. Bai, X., & Liu, Y. (2016). Robust optimization of supply chain network design in fuzzy decision system. Journal of Intelligent Manufacturing, 27(6), 1131–1149.  https://doi.org/10.1007/s10845-014-0939-y.CrossRefGoogle Scholar
  6. Behzadi, G., O’Sullivan, M. J., Olsen, T. L., & Zhang, A. (2017). Agribusiness supply chain risk management: A review of quantitative decision models. Omega (United Kingdom).  https://doi.org/10.1016/j.omega.2017.07.005.CrossRefGoogle Scholar
  7. Benders, J. F. (1962). Partitioning procedures for solving mixed-variables programming problems. Numerische Mathematik, 4(1), 238–252.  https://doi.org/10.1007/bf01386316.CrossRefGoogle Scholar
  8. Blos, M. F., Quaddus, M., Wee, H. M., & Watanabe, K. (2009). Supply chain risk management (SCRM): A case study on the automotive and electronic industries in Brazil. Supply Chain Management: An International Journal, 14(4), 247–252.  https://doi.org/10.1108/13598540910970072.CrossRefGoogle Scholar
  9. Brun, A., Caridi, M., Fahmy Salama, K., & Ravelli, I. (2006). Value and risk assessment of supply chain management improvement projects. International Journal of Production Economics, 99(1), 186–201.  https://doi.org/10.1016/j.ijpe.2004.12.016.CrossRefGoogle Scholar
  10. Bruzzone, A., & Orsoni, A. (2003). AI and simulation-based techniques for the assessment of supply chain logistic performance. 2003-January, 154–164.  https://doi.org/10.1109/simsym.2003.1192809.
  11. Cardona-Valdés, Y., Álvarez, A., & Pacheco, J. (2014). Metaheuristic procedure for a bi-objective supply chain design problem with uncertainty. Transportation Research Part B: Methodological, 60, 66–84.  https://doi.org/10.1016/j.trb.2013.11.010.CrossRefGoogle Scholar
  12. Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429–444.  https://doi.org/10.1016/0377-2217(78)90138-8.CrossRefGoogle Scholar
  13. Chen, J., Zhao, X., & Shen, Z.-J. (2015). Risk mitigation benefit from backup suppliers in the presence of the horizontal fairness concern. Decision Sciences, 46(4), 663–696.  https://doi.org/10.1111/deci.12157.CrossRefGoogle Scholar
  14. Chen, M., Xia, Y., & Wang, X. (2010). Managing supply uncertainties through Bayesian information update. IEEE Transactions on Automation Science and Engineering, 7(1), 24–36.  https://doi.org/10.1109/tase.2009.2018466.CrossRefGoogle Scholar
  15. Chen, P.-S., & Wu, M.-T. (2013). A modified failure mode and effects analysis method for supplier selection problems in the supply chain risk environment: A case study. Computers & Industrial Engineering, 66(4), 634–642.  https://doi.org/10.1016/j.cie.2013.09.018.CrossRefGoogle Scholar
  16. Chopra, S., & Sodhi, M. S. (2014). Reducing the risk of supply chain disruptions. MIT Sloan Management Review, 55, 73–80.Google Scholar
  17. Emmenegger, S., Laurenzi, E., & Thönssen, B. (2012). Improving supply-chain-management based on semantically enriched risk descriptions. In K. Liu & J. Filipe (Eds.), Proceedings of the International Conference on Knowledge, Management and Information Sharing (pp. 70–80).Google Scholar
  18. Everett, H. (1963). Generalized lagrange multiplier method for solving problems of optimum allocation of resources. Operations Research, 11(3), 399–417.  https://doi.org/10.1287/opre.11.3.399.CrossRefGoogle Scholar
  19. Garvey, M. D., Carnovale, S., & Yeniyurt, S. (2015). An analytical framework for supply network risk propagation: A Bayesian network approach. European Journal of Operational Research, 243(2), 618–627.  https://doi.org/10.1016/j.ejor.2014.10.034.CrossRefGoogle Scholar
  20. Ghadge, A., Dani, S., & Kalawsky, R. (2012). Supply chain risk management: Present and future scope. The International Journal of Logistics Management, 23(3), 313–339.  https://doi.org/10.1108/09574091211289200.CrossRefGoogle Scholar
  21. Ghadge, A., Dani, S., Chester, M., & Kalawsky, R. (2013). A systems approach for modelling supply chain risks. Supply Chain Management: An International Journal, 18(5), 523–538.  https://doi.org/10.1108/SCM-11-2012-0366.CrossRefGoogle Scholar
  22. Ghadge, A., Dani, S., Ojha, R., & Caldwell, N. (2017). Using risk sharing contracts for supply chain risk mitigation: A buyer-supplier power and dependence perspective. Computers & Industrial Engineering, 103, 262–270.  https://doi.org/10.1016/j.cie.2016.11.034.CrossRefGoogle Scholar
  23. Giannakis, M., & Louis, M. (2011). A multi-agent based framework for supply chain risk management. Journal of Purchasing and Supply Management, 17(1), 23–31.  https://doi.org/10.1016/j.pursup.2010.05.001.CrossRefGoogle Scholar
  24. Govindan, K., Fattahi, M., & Keyvanshokooh, E. (2017). Supply chain network design under uncertainty: A comprehensive review and future research directions. European Journal of Operational Research, 263(1), 108–141.  https://doi.org/10.1016/j.ejor.2017.04.009.CrossRefGoogle Scholar
  25. Green, W. (2018). Five lessons from the KFC chicken crisis. CIPS Supply Management. https://www.cips.org/supply-management/analysis/2018/february/five-lessons-from-the-kfc-chicken-crisis/.
  26. Hajmohammad, S., & Vachon, S. (2015). Mitigation, avoidance, or acceptance? Managing supplier sustainability risk. Journal of Supply Chain Management, 52(2), 48–65.  https://doi.org/10.1111/jscm.12099.CrossRefGoogle Scholar
  27. Ho, W., Zheng, T., Yildiz, H., & Talluri, S. (2015). Supply chain risk management: A literature review. International Journal of Production Research, 53(16), 5031–5069.  https://doi.org/10.1080/00207543.2015.1030467.CrossRefGoogle Scholar
  28. Hwang, C.-L., & Yoon, K. (1981). Multiple attribute decision making (Lecture notes in economics and mathematical systems). Berlin: Springer.CrossRefGoogle Scholar
  29. Jiang, C., & Sheng, Z. (2009). Case-based reinforcement learning for dynamic inventory control in a multi-agent supply-chain system. Expert Systems with Applications, 36(3 Part 2), 6520–6526.  https://doi.org/10.1016/j.eswa.2008.07.036.CrossRefGoogle Scholar
  30. Kayis, B., & Karningsih, P. D. (2012). SCRIS: A knowledge-based system tool for assisting manufacturing organizations in identifying supply chain risks. Journal of Manufacturing Technology Management, 23(7), 834–852.  https://doi.org/10.1108/17410381211267682.CrossRefGoogle Scholar
  31. Keyvanshokooh, E., Ryan, S. M., & Kabir, E. (2016). Hybrid robust and stochastic optimization for closed-loop supply chain network design using accelerated Benders decomposition. European Journal of Operational Research, 249(1), 76–92.  https://doi.org/10.1016/j.ejor.2015.08.028.CrossRefGoogle Scholar
  32. Kull, T., & Closs, D. (2008). The risk of second-tier supplier failures in serial supply chains: Implications for order policies and distributor autonomy. European Journal of Operational Research, 186(3), 1158–1174.  https://doi.org/10.1016/j.ejor.2007.02.028.CrossRefGoogle Scholar
  33. Kwon, O., Im, G. P., & Lee, K. C. (2007). MACE-SCM: A multi-agent and case-based reasoning collaboration mechanism for supply chain management under supply and demand uncertainties. Expert Systems with Applications, 33(3), 690–705.  https://doi.org/10.1016/j.eswa.2006.06.015.CrossRefGoogle Scholar
  34. Land, A. H., & Doig, A. G. (1960). An automatic method of solving discrete programming problems. Econometrica, 28(3), 497–520.  https://doi.org/10.2307/1910129.CrossRefGoogle Scholar
  35. Lee, D. H., & Dong, M. (2009). Dynamic network design for reverse logistics operations under uncertainty. Transportation Research Part E: Logistics and Transportation Review, 45(1), 61–71.  https://doi.org/10.1016/j.tre.2008.08.002.CrossRefGoogle Scholar
  36. Les incidences du Brexit sur les exportations irlandaises de produits agroalimentaires vers le Royaume-Uni.Google Scholar
  37. Matthews, A. (2017). Brexit impacts on Irish agri-food exports to the UK. EuroChoices, 16, 26–32.CrossRefGoogle Scholar
  38. Mazzuto, G., Bevilacqua, M., & Ciarapica, F. E. (2012). Supply chain modelling and managing, using timed coloured Petri nets: A case study. International Journal of Production Research, 50(16), 4718–4733.  https://doi.org/10.1080/00207543.2011.639397.CrossRefGoogle Scholar
  39. Mele, F. D., Guillén, G., Espuña, A., & Puigjaner, L. (2007). An agent-based approach for supply chain retrofitting under uncertainty. Computers & Chemical Engineering, 31(5–6), 722–735.  https://doi.org/10.1016/j.compchemeng.2006.12.013.CrossRefGoogle Scholar
  40. Miranda, P. A., & Garrido, R. A. (2008). Valid inequalities for Lagrangian relaxation in an inventory location problem with stochastic capacity. Transportation Research Part E: Logistics and Transportation Review, 44(1), 47–65.  https://doi.org/10.1016/j.tre.2006.04.002.CrossRefGoogle Scholar
  41. Mulvey, J. M., Vanderbei, R. J., & Zenios, S. A. (1995). Robust optimization of large-scale systems. Operations Research, 43(2), 264–281.  https://doi.org/10.1287/opre.43.2.264.CrossRefGoogle Scholar
  42. Nickel, S., Saldanha-da-Gama, F., & Ziegler, H. P. (2012). A multi-stage stochastic supply network design problem with financial decisions and risk management. Omega, 40(5), 511–524.  https://doi.org/10.1016/j.omega.2011.09.006.CrossRefGoogle Scholar
  43. O’Connor, M., & Das, A. (2009). SQWRL: a query language for OWL. Paper presented at the Proceedings of the 6th International Conference on OWL: Experiences and Directions—Volume 529, Chantilly, VA,.Google Scholar
  44. Olson, D. L., & Swenseth, S. R. (2014). Trade-offs in supply chain system risk mitigation. Systems Research and Behavioral Science, 31(4), 565–579.  https://doi.org/10.1002/sres.2299.CrossRefGoogle Scholar
  45. Peng, P., Snyder, L. V., Lim, A., & Liu, Z. (2011). Reliable logistics networks design with facility disruptions. Transportation Research Part B: Methodological, 45(8), 1190–1211.  https://doi.org/10.1016/j.trb.2011.05.022.CrossRefGoogle Scholar
  46. Petri, C. A. (1966). Communication with automata. Hamburg.Google Scholar
  47. Pettit, T. J., Croxton, K. L., & Fiksel, J. (2013). Ensuring supply chain resilience: Development and implementation of an assessment tool. Journal of Business Logistics, 34(1), 46–76.  https://doi.org/10.1111/jbl.12009.CrossRefGoogle Scholar
  48. Pishvaee, M. S., Rabbani, M., & Torabi, S. A. (2011). A robust optimization approach to closed-loop supply chain network design under uncertainty. Applied Mathematical Modelling, 35(2), 637–649.  https://doi.org/10.1016/j.apm.2010.07.013.CrossRefGoogle Scholar
  49. Qi, L., Shen, Z. J. M., & Snyder, L. V. (2010). The effect of supply disruptions on supply chain design decisions. Transportation Science, 44(2), 274–289.  https://doi.org/10.1287/trsc.1100.0320.CrossRefGoogle Scholar
  50. Rossi, T., & Pero, M. (2012). A formal method for analysing and assessing operational risk in supply chains. International Journal of Operational Research, 13(1), 90–109.  https://doi.org/10.1504/ijor.2012.044029.CrossRefGoogle Scholar
  51. Ruiz-Torres, A. J., & Mahmoodi, F. (2007). The optimal number of suppliers considering the costs of individual supplier failures. Omega, 35(1), 104–115.  https://doi.org/10.1016/j.omega.2005.04.005.CrossRefGoogle Scholar
  52. Saaty, T. L. (1980). The analytic hierarchy process: Planning, priority setting, resources allocation (p. 281). New York: McGraw.Google Scholar
  53. Samvedi, A., Jain, V., & Chan, F. T. S. (2013). Quantifying risks in a supply chain through integration of fuzzy AHP and fuzzy TOPSIS. International Journal of Production Research, 51(8), 2433–2442.  https://doi.org/10.1080/00207543.2012.741330.CrossRefGoogle Scholar
  54. Santoso, T., Ahmed, S., Goetschalckx, M., & Shapiro, A. (2005). A stochastic programming approach for supply chain network design under uncertainty. European Journal of Operational Research, 167(1), 96–115.  https://doi.org/10.1016/j.ejor.2004.01.046.CrossRefGoogle Scholar
  55. Schoenherr, T., Tummala, V. M. R., & Harrison, T. P. (2008). Assessing supply chain risks with the analytic hierarchy process: Providing decision support for the offshoring decision by a US manufacturing company. Journal of Purchasing and Supply Management, 14(2), 100–111.  https://doi.org/10.1016/j.pursup.2008.01.008.CrossRefGoogle Scholar
  56. Snyder, L. V., Atan, Z., Peng, P., Rong, Y., Schmitt, A. J., & Sinsoysal, B. (2016). OR/MS models for supply chain disruptions: A review. IIE Transactions (Institute of Industrial Engineers), 48(2), 89–109.  https://doi.org/10.1080/0740817x.2015.1067735.CrossRefGoogle Scholar
  57. Taleizadeh, A. A., Niaki, S. T. A., & Barzinpour, F. (2011). Multiple-buyer multiple-vendor multi-product multi-constraint supply chain problem with stochastic demand and variable lead-time: A harmony search algorithm. Applied Mathematics and Computation, 217(22), 9234–9253.  https://doi.org/10.1016/j.amc.2011.04.001.CrossRefGoogle Scholar
  58. Torabi, S. A., Baghersad, M., & Mansouri, S. A. (2015). Resilient supplier selection and order allocation under operational and disruption risks. Transportation Research Part E: Logistics and Transportation Review, 79, 22–48.  https://doi.org/10.1016/j.tre.2015.03.005.CrossRefGoogle Scholar
  59. Wang, G., Gunasekaran, A., Ngai, E. W. T., & Papadopoulos, T. (2016). Big data analytics in logistics and supply chain management: Certain investigations for research and applications. International Journal of Production Economics, 176, 98–110.  https://doi.org/10.1016/j.ijpe.2016.03.014.CrossRefGoogle Scholar
  60. Wu, T., Blackhurst, J., & O’Grady, P. (2007). Methodology for supply chain disruption analysis. International Journal of Production Research, 45(7), 1665–1682.  https://doi.org/10.1080/00207540500362138.CrossRefGoogle Scholar
  61. Wu, D. D., & Olson, D. L. (2008). Supply chain risk, simulation, and vendor selection. International Journal of Production Economics, 114(2), 646–655.  https://doi.org/10.1016/j.ijpe.2008.02.013.CrossRefGoogle Scholar
  62. Xiao, T., & Yang, D. (2008). Price and service competition of supply chains with risk-averse retailers under demand uncertainty. International Journal of Production Economics, 114(1), 187–200.  https://doi.org/10.1016/j.ijpe.2008.01.006.CrossRefGoogle Scholar
  63. Zage, D., Glass, K., & Colbaugh, R. (2013). Improving supply chain security using big data. 254–259.  https://doi.org/10.1109/isi.2013.6578830.
  64. Zegordi, S. H., & Davarzani, H. (2012). Developing a supply chain disruption analysis model: Application of colored Petri-nets. Expert Systems with Applications, 39(2), 2102–2111.  https://doi.org/10.1016/j.eswa.2011.07.137.CrossRefGoogle Scholar
  65. Zhalechian, M., Tavakkoli-Moghaddam, R., Zahiri, B., & Mohammadi, M. (2016). Sustainable design of a closed-loop location-routing-inventory supply chain network under mixed uncertainty. Transportation Research Part E: Logistics and Transportation Review, 89, 182–214.  https://doi.org/10.1016/j.tre.2016.02.011.CrossRefGoogle Scholar
  66. Zhao, K., & Yu, X. (2011). A case based reasoning approach on supplier selection in petroleum enterprises. Expert Systems with Applications, 38(6), 6839–6847.  https://doi.org/10.1016/j.eswa.2010.12.055.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • George Baryannis
    • 1
  • Samir Dani
    • 2
  • Sahar Validi
    • 2
  • Grigoris Antoniou
    • 1
  1. 1.Department of Computer Science, School of Computing & EngineeringUniversity of HuddersfieldHuddersfieldUK
  2. 2.Department of Logistics, Operations, Hospitality and Marketing, Huddersfield Business SchoolUniversity of HuddersfieldHuddersfieldUK

Personalised recommendations