Laser-Induced Alignment and Orientation Dynamics Beyond the Rigid-Rotor Approximation

  • Tamás SzidarovszkyEmail author
  • Kaoru Yamanouchi
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 118)


We introduce theoretical methods we developed, with which the laser-induced alignment and/or orientation dynamics of polyatomic molecules can be investigated beyond the rigid rotor approximation. The time-dependent Schrödinger equation is solved by expanding the laser-induced wave packet in terms of the field-free rovibrational eigenstates of the system. We present the results of highly accurate numerical calculations on the laser-induced alignment dynamics of floppy and weakly-bound H2He + and rigid- and strongly-bound H2O, and investigate the effect of the vibrational excitations on the alignment dynamics. We show that one-photon vibrational excitations induce changes in the light-induced alignment and orientation dynamics through the changes in the molecular structure, leading to the breakdown of the rigid rotor approximation, and through the changes in the optical selections in the rotational excitation.



The authors thank the support from the Grant-in-Aid (Tokubetsu Kenkyuin Shorei-hi) scientific research fund of JSPS (Japan Society for the Promotion of Science), project number 26-04333, the JSPS KAKENHI Grant No. 15H05696, and the NKFIH Grant No. PD124623.


  1. 1.
    H. Stapefeldt, T. Seideman, Rev. Mod. Phys. 75, 543 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    Y. Ohshima, H. Hasegawa, Int. Rev. Phys. Chem. 29, 619 (2010)CrossRefGoogle Scholar
  3. 3.
    M. Lemeshko, R.V. Krems, J.M. Doyle, S. Kais, Mol. Phys. 111, 1648 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    A. Rouze´e, A. Gijsbertsen, M.J.J. Vrakking, in Progress in Ultrafast Intense Laser Science, vol VI, Chap. 3 (Springer, Berlin, Heidelberg, 2010)Google Scholar
  5. 5.
    O. Faucher, B. Lavorel, E. Hertz, F. Chaussard, in Progress in Ultrafast Intense Laser Science, vol VII, Chap. 4 (Springer, Berlin, Heidelberg, 2011)Google Scholar
  6. 6.
    H. Hasegawa, Y. Ohshima, in Progress in Ultrafast Intense Laser Science, vol XII, Chap. 3 (Springer International Publishing, Switzerland, 2015)Google Scholar
  7. 7.
    T. Szidarovszky, M. Jono, K. Yamanouchi, Comput. Phys. Commun. 228, 219 (2018)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    J. Floß, T. Grohmann, M. Leibscher, T. Seideman, J. Chem. Phys. 136, 084309 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    C.M. Dion, A. Keller, O. Atabek, A.D. Bandrauk, Phys. Rev. A 59, 1382 (1999)ADSCrossRefGoogle Scholar
  10. 10.
    A.A. Søndergaard, R.E. Zillich, H. Stapelfeldt, J. Chem. Phys. 147, 074304 (2017)Google Scholar
  11. 11.
    A. Owens, E.J. Zak, K.L. Chubb, S.N. Yurchenko, J. Tennyson, A. Yachmenev, Sci. Rep. 7, 45068 (2017)Google Scholar
  12. 12.
    P.R. Bunker, P. Jensen, Molecular Symmetry and Spectroscopy (NRC Research Press, Ottawa, 1998)Google Scholar
  13. 13.
    A.G. Császár, C. Fábri, T. Szidarovszky, E. Mátyus, T. Furtenbacher, G. Czakó, Phys. Chem. Chem. Phys. 14, 1085 (2012). and references thereinCrossRefGoogle Scholar
  14. 14.
    J. Tennyson, J. Chem. Phys. 145, 120901 (2016). and references thereinADSCrossRefGoogle Scholar
  15. 15.
    T. Szidarovszky, K. Yamanouchi, Mol. Phys. (André D. Bandrauk Special Issue) 115, 1916 (2017)Google Scholar
  16. 16.
    K. Schuh, P. Rosenow, M. Kolesik, E.M. Wright, S.W. Koch, J.V. Moloney, Phys. Rev. A 96, 043818 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    D. De Fazio, M. de Castro-Vitores, A. Aguado, V. Aquilanti, S. Cavalli, J. Chem. Phys. 137, 244306 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    D. Papp, A.G. Császár, K. Yamanouchi, T. Szidarovszky, J. Chem. Theory Comput. 14, 1523 (2018)CrossRefGoogle Scholar
  19. 19.
    A.G. Császár, E. Mátyus, T. Szidarovszky, L. Lodi, N.F. Zobov, S.V. Shirin, O.L. Polyansky, J. Tennyson, J. Quant. Spectr. Rad. Transfer 111(9), 1043–1064 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    V. Barone, M. Biczysko, J. Blonio, Phys. Chem. Chem. Phys. 16, 1759 (2014)CrossRefGoogle Scholar
  21. 21.
    S.N. Yurchenko, W. Thiel, P. Jensen, Mol. Spectrosc. 245, 126 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    J.M. Bowman, S. Carter, X.-C. Huang, Int. Rev. Phys. Chem. 22, 533 (2003)CrossRefGoogle Scholar
  23. 23.
    C. Fábri, E. Mátyus, A. G. Császár, J. Chem. Phys. 134, 074105 (2011)Google Scholar
  24. 24.
    R.N. Zare, Angular Momentum (Wiley, New York, 1988)Google Scholar
  25. 25.
    V. Makhija, X. Ren, V. Kumarappan, Phys. Rev. A 85, 033425 (2012)Google Scholar
  26. 26.
    C.G.J. Jacobi, Cr. Hebd, Acad. Sci. 15, 236 (1842)Google Scholar
  27. 27.
    T. Szidarovszky, A.G. Császár, G. Czakó, Phys. Chem. Chem. Phys. 12, 8373 (2010)CrossRefGoogle Scholar
  28. 28.
    J.C. Light, T. Carrington Jr., Adv. Chem. Phys. 114, 263 (2000)Google Scholar
  29. 29.
    T. Szidarovszky, A.G. Császár, Mol. Phys. (Martin Quack Special Issue) 111, 2131 (2013)Google Scholar
  30. 30.
    P. Barletta, S.V. Shirin, N.F. Zobov, O.L. Polyansky, J. Tennyson, E.F. Valeev, A.G. Császár, J. Chem. Phys. 125, 204307 (2006)ADSCrossRefGoogle Scholar
  31. 31.
    L. Lodi, J. Tennyson, O.L. Polyansky, J. Chem. Phys. 135, 034113 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    G. Avila, J. Chem. Phys. 122, 144310 (2005)ADSCrossRefGoogle Scholar
  33. 33.
    P. Palmieri, C. Puzzarini, V. Aquilanti, G. Capecchi, S. Cavalli, D. DeFazio, A. Aguilar, X. Giménez, J.M. Lucas, Mol. Phys. 98, 1835 (2000)ADSCrossRefGoogle Scholar
  34. 34.
    M. Juřek, V. Špirko, W.P. Kraemer, J. Mol. Sprectrosc. 182, 364 (1997)ADSCrossRefGoogle Scholar
  35. 35.
    M. Šindelka, V. Špirko, W.P. Kraemer, Theor. Chem. Acc. 110, 170 (2003)CrossRefGoogle Scholar
  36. 36.
    J. Tennyson, S. Miller, J. Chem. Phys. 87, 6648 (1987)ADSCrossRefGoogle Scholar
  37. 37.
    J. Tennyson, P.F. Bernath, L.R. Brown, A. Campargue, M.R. Carleer, A.G. Császár, L. Daumont, R.R. Gamache, J.T. Hodges, O.V. Naumenko, O.L. Polyansky, L.S. Rothmam, A.C. Vandaele, N.F. Zobov, A.R. Al Derzi, C. Fábri, A.Z. Fazliev, T. Furtenbacher, I.E. Gordon, L. Lodi, I.I. Mizus, J. Quant. Spectrosc. Radiat. Transfer 117, 29 (2013)Google Scholar
  38. 38.
    A.G. Császár, G. Czakó, T. Furtenbacher, J. Tennyson, V. Szalay, S.V. Shirin, N.F. Zobov, O.L. Polyansky, J. Chem. Phys. 122, 214305 (2005)ADSCrossRefGoogle Scholar
  39. 39.
    G. Czakó, E. Mátyus, A.G. Császár, J. Phys. Chem. A 113, 11665–11678 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Chemistry, School of ScienceThe University of TokyoTokyoJapan
  2. 2.Laboratory of Molecular Structure and Dynamics, Institute of ChemistryEötvös Loránd University and MTA-ELTE Complex Chemical Systems Research GroupBudapestHungary

Personalised recommendations