Advertisement

Extreme States of Matter by Isochoric Heating

  • Dimitri BataniEmail author
Chapter
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 118)

Abstract

Extreme states of matter, characterized by very high temperatures and pressure, are common in the laboratory and in nature, including laser-produced plasmas, controlled thermonuclear fusion, the interior of planets, brown dwarfs, burning stars, up to supernova explosions. The advent of high-intensity short-pulse lasers offers a new tool for this kind of studies. Extreme states can be created using the “isochoric heating” approach in which matter is rapidly heated by the fast energy deposition from the laser before any significant expansion takes place. Laser beams are unable to penetrate deeply inside matter but the fast electrons produced by laser-matter interaction can be the “carriers” allowing heating in-depth of the target. X-ray imaging and X-ray spectroscopy allow for characterization of the produced states of matter.

Notes

Acknowledgements

The experiments described in this chapter have been possible thanks to collaborations with many scientists from different laboratories and countries: G. Boutoux, J. J. Santos (University of Bordeaux, France), O. N. Rosmej, A. Schönlein (Goethe University, Frankfurt, Germany), L. Antonelli (University of York, UK), J. J. Honrubia (Universidad Politécnica de Madrid, Spain), S. Pikuz (JIHT, Moscow, Russia), D. Khaghani, P. Neumayer (GSI Darmstadt. Germany), A. Debayle, Ch. Rousseaux, L. Gremillet (CEA DAM DIF, Bruyères-le-Chatel, France), Ch. Spindloe, M. Tolley (Rutherford Appleton Laboratory, UK), A. Magunov (General Physics Institute, Moscow, Russia), W. Nazarov (University of St. Andrews, UK), S. D. Baton, A. Benuzzi-Mounaix (LULI, Ecole Polytechnique, France), A. Morace, Y. Okano, Y. Inubushi, H. Nishimura, R. Kodama (Osaka University, Japan) Y. Aglitskiy (Science Applications International Corporation, USA), K. Jakubowska (IPPLM, Warsaw, Poland). The work was also partially supported by the Competitiveness Program of NRNU MEPhI, Russia.

References

  1. 1.
    D. Batani, Matter in extreme conditions produced by lasers. Perspect. Europhys. Lett. 114, 65001 (2016)ADSCrossRefGoogle Scholar
  2. 2.
    A. Benuzzi, T. Lower, M. Koenig, B. Faral, D. Batani, D. Beretta, C. Danson, D. Pepler, Indirect and direct laser driven shock waves and applications to copper equation of state measurements in the 10–40 Mbar pressure range. Phys. Rev. E 54, 2162 (1996)ADSCrossRefGoogle Scholar
  3. 3.
    D. Batani, A. Balducci, D. Beretta, A. Bernardinello, T. Lower, M. Koenig, A. Benuzzi, B. Faral, T. Hall, Equation of state data for gold in the pressure range <10 TPa. Phys. Rev. B 61, 9287 (2000)ADSCrossRefGoogle Scholar
  4. 4.
    D. Batani, A. Morelli, M. Tomasini, A. Benuzzi-Mounaix, B. Faral, M. Koenig, P. Baclet, B. Cathala, B. Marchet, I. Masclet, M. Rebec, C. Reverdin, R. Cauble, P. Celliers, G. Collins, L. Da Silva, T. Hall, M. Moret, B. Sacchi, Equation of state data for iron at pressure beyond 10 Mbar. Phys. Rev. Lett. 88, 235502 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    A. Benuzzi-Mounaix, M. Koenig, G. Huser, B. Faral, N. Grandjouan, D. Batani, E. Henry, M. Tomasini, B. Marchet, T.A. Hall, M. Boustie, T. De Rességuier, M. Hallouin, F. Guyot, Absolute equation of state measurements of iron using laser driven shocks. Phys. Plasmas 9, 2466 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    P.M. Celliers, G.W. Collins, D.G. Hicks, M. Koenig, E. Henry, A. Benuzzi-Mounaix, D. Batani, D.K. Bradley, L.B. Da Silva, R.J. Wallace, S.J. Moon, J.H. Eggert, K.K.M. Lee, L.R. Benedetti, R. Jeanloz, I. Masclet, N. Dague, B. Marchet, M. Rabec Le Gloahec, C. Reverdin, J. Pasley, O. Willi, D. Neely, C. Danson, Electronic conduction in shock-compressed water. Phys. Plasmas 11, L41 (2004)CrossRefGoogle Scholar
  7. 7.
    D. Batani, K. Jakubowska, A. Benuzzi-Mounaix, C. Cavazzoni, C. Danson, T. Hall, M. Kimpel, D. Neely, J. Pasley, M. Rabec Le Gloahec, B. Telaro, Refraction index of shock compressed water in the megabar pressure range. Europhys. Lett. 112, 49901 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    D. Batani, H. Stabile. M. Tomasini, G. Lucchini, A. Ravasio, M. Koenig, A. Benuzzi-Mounaix, H. Nishimura, Y. Ochi, J. Ullschmied, J. Skala, B. Kralikova, M. Pfeifer, C. Kadlec, T. Mocek, A. Präg, T. Hall, P. Milani, E. Barborini, P. Piseri, Hugoniot data for carbon at megabar pressures. Phys. Rev. Lett. 92, 065503 (2004)Google Scholar
  9. 9.
    S. Paleari, D. Batani, T. Vinci, R. Benocci, K. Shigemori, Y. Hironaka, T. Kadono, A. Shiroshita, P. Piseri, S. Bellucci, A. Mangione, A. Aliverdiev, A new target design for laser shock-compression studies of carbon reflectivity in the megabar regime. Eur. J. Phys. D 67, 136 (2013)Google Scholar
  10. 10.
    M. Koenig, A. Benuzzi, B. Faral, J. Krishnan, J.M. Boudenne, T. Jalinaud, C. Remond, A. Decoster, D. Batani, D. Beretta, T. Hall, Brominated plastic equation of state measurement using laser driven shocks. Appl. Phys. Lett. 72, 1033 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    R. Dezulian, F. Canova, S. Barbanotti, F. Orsenigo, R. Redaelli, T. Vinci, G. Lucchini, D. Batani, B. Rus, J. Polan, M. Kozlová, M. Stupka, A.R. Praeg, P. Homer, T. Havlicek, M. Soukup, E. Krousky, J. Skala, R. Dudzak, M. Pfeifer, H. Nishimura, K. Nagai, F. Ito, T. Norimatsu, A. Kilpio, E. Shashkov, I. Stuchebrukhov, V. Vovchenko, V. Chernomyrdin, I. Krasuyk, Hugoniot data of plastic foams obtained from laser-driven shocks. Phys. Rev. E 73, 047401 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    S. Baton, M. Koenig, P. Guillou, B. Loupias, A. Benuzzi-Mounaix, J. Fuchs, Ch. Rousseaux, L. Gremillet, D. Batani, A. Morace, M. Nakatsutsumi, R. Kodama, Y. Aglitskiy, Relativistic electron transport and confinement within charge-insulated, mass-limited targets. High Energy Density Phys. 3, 358 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    F. N. Beg, A. R. Bell et al., Phys. Plasmas 4, 447 (1997)Google Scholar
  14. 14.
    E. Martinolli, M. Koenig, S.D. Baton, J.J. Santos, F. Amiranoff, D. Batani, E. Perelli-Cippo, F. Scianitti, L. Gremillet, C. Rousseaux, T.A. Hall, M.H. Key, R. Snavely, A. MacKinnon, R.R. Freeman, J.A. King, D. Neely, R.J. Clark, Fast electron transport and heating of solid targets in high intensity laser interaction measured by Kα fluorescence. Phys. Rev. E 73, 046402 (2006)Google Scholar
  15. 15.
    G. Chiu, A. Ng, Phys. Rev. E 59, 1024 (1999)ADSCrossRefGoogle Scholar
  16. 16.
    A. Morace, A. Magunov, D. Batani, R. Redaelli, C. Fourment, J.J. Santos, G. Malka, A. Boscheron, A. Casner, W. Nazarov, T. Vinci, Y. Okano, Y. Inubushi, H. Nishimura, A. Flacco, C. Spindloe, M. Tolley, Study of plasma heating induced by fast electrons. Phys. Plasmas 16, 122701 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    V.A. Boiko, J. Sov. Laser Res. 6, 85 (1985)Google Scholar
  18. 18.
    J. Abdallah Jr., A.Y. Faenov, IYu. Skobelev, A.I. Magunov, T.A. Pikuz, T. Auguste, P. D’Oliveira, S. Hulin, P. Monot, Phys. Rev. A 63, 032706 (2001)ADSCrossRefGoogle Scholar
  19. 19.
    H. Nishimura, R. Mishra, S. Ohshima, H. Nakamura, M. Tanabe, T. Fujiwara, N. Yamamoto, S. Fujioka, D. Batani, M. Veltcheva, T. Desai, R. Jafer, T. Kawamura, Y. Sentoku, R. Mancini, P. Hakel, F. Koike, K. Mima, Energy transport and isochoric heating of a low-Z, reduced-mass target irradiated with a high intensity laser pulse. Phys. Plasmas 18, 022702 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    A. Schönlein, G. Boutoux, S. Pikuz, L. Antonelli, D. Batani, A. Debayle, A. Franz, L. Giuffrida, J.J. Honrubia, J. Jacoby, D. Khaghani, P. Neumayer, O.N. Rosmej, T. Sakaki, J.J. Santos, A. Sauteray, Generation and characterization of warm dense matter isochorically heated by laser-induced relativistic electrons in a wire target. EPL 114, 45002 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    T.A. Pikuz, et al., Laser-generated and other laboratory X-ray and EUV sources, optics, and applications, in Proceedings of SPIE, vol. 5196, ed. by G. Kyrala, J.C. Gauthier (2004), p. 362Google Scholar
  22. 22.
    F. Pisani, A. Antonicci, A. Bernardinello, D. Batani, E. Martinolli, M. Koenig, L. Gremillet, F. Amiranoff, S. Baton, T. Hall, D. Scott, P. Norreys, A. Djaoui, C. Rousseaux, P. Fews, H. Bandulet, H. Pepin, Experimental evidence of electric inhibition in the propagation of fast electrons in solid matter. Phys. Rev. E 62, R5927 (2000)ADSCrossRefGoogle Scholar
  23. 23.
    H.K. Chung, M.H. Chen, W.L. Morgan, Y. Ralchenko, R.W. Lee, High Energy Density Phys. 1, 3 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    J.J. Honrubia et al., Laser Part. Beams 24, 217 (2006)ADSGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Université Bordeaux, CNRS, CEA, CELIA, UMR 5107TalenceFrance
  2. 2.Department of Plasma PhysicsNational Research Nuclear University MEPhIMoscowRussia

Personalised recommendations