Advertisement

Contrast-Enhanced Ultrasound: The Current State

  • M. Beth McCarvilleEmail author
  • Annamaria Deganello
  • Zoltan Harkanyi
Chapter
Part of the Pediatric Oncology book series (PEDIATRICO)

Abstract

Contrast-enhanced ultrasound (CEUS) is being increasingly recognized as an important method of imaging a variety of adult malignancies involving the liver, breast, prostate, and kidneys. Children are the ideal patient population for CEUS for a number of reasons including avoidance of exposure to ionizing radiation and sedation. However, because these agents were initially approved for use only in adult cardiology, less is known of their potential value in children. In 2016, the United States Federal Drug Administration approved the first ultrasound contrast agent for use in imaging liver lesions in both adults and children. This approval ushers in a new era for the growth and development of CEUS in children in a number of clinical settings. In this chapter experts in pediatric CEUS from the United States and Europe will discuss the important safety and technical aspects of CEUS and describe their experience with this modality in the setting of pediatric oncology. Future directions of CEUS in pediatric oncology will be addressed.

Keywords

Contrast-enhanced ultrasound Safety Pediatric Malignancies Treatment response 

References

  1. 1.
    Berrington de Gonzalez A, Salotti JA, McHugh K, et al. Relationship between paediatric CT scans and subsequent risk of leukaemia and brain tumours: assessment of the impact of underlying conditions. Br J Cancer. 2016;114(4):388–94.CrossRefGoogle Scholar
  2. 2.
    Tibussek D, Rademacher C, Caspers J, et al. Gadolinium brain deposition after macrocyclic gadolinium administration: a pediatric case-control study. Radiology. 2017;285:223.CrossRefGoogle Scholar
  3. 3.
    Yusuf GT, Sellars ME, Deganello A, Cosgrove DO, Sidhu PS. Retrospective analysis of the safety and cost implications of pediatric contrast-enhanced ultrasound at a single center. AJR Am J Roentgenol. 2017;208(2):446–52.CrossRefGoogle Scholar
  4. 4.
    Piskunowicz M, Kosiak W, Batko T, Piankowski A, Polczynska K, Adamkiewicz-Drozynska E. Safety of intravenous application of second-generation ultrasound contrast agent in children: prospective analysis. Ultrasound Med Biol. 2015;41(4):1095–9.CrossRefGoogle Scholar
  5. 5.
    Coleman JL, Navid F, Furman WL, McCarville MB. Safety of ultrasound contrast agents in the pediatric oncologic population: a single-institution experience. AJR Am J Roentgenol. 2014;202(5):966–70.CrossRefGoogle Scholar
  6. 6.
    Jacob J, Deganello A, Sellars ME, Hadzic N, Sidhu PS. Contrast enhanced ultrasound (CEUS) characterization of grey-scale sonographic indeterminate focal liver lesions in pediatric practice. Ultraschall Med. 2013;34(6):529–40.CrossRefGoogle Scholar
  7. 7.
    Valentino M, Serra C, Pavlica P, et al. Blunt abdominal trauma: diagnostic performance of contrast-enhanced US in children--initial experience. Radiology. 2008;246(3):903–9.CrossRefGoogle Scholar
  8. 8.
    Bonini G, Pezzotta G, Morzenti C, Agazzi R, Nani R. Contrast-enhanced ultrasound with SonoVue in the evaluation of postoperative complications in pediatric liver transplant recipients. J Ultrasound. 2007;10(2):99–106.CrossRefGoogle Scholar
  9. 9.
    McMahon CJ, Ayres NA, Bezold LI, et al. Safety and efficacy of intravenous contrast imaging in pediatric echocardiography. Pediatr Cardiol. 2005;26(4):413–7.CrossRefGoogle Scholar
  10. 10.
    Sidhu PS, Cantisani V, Deganello A, et al. Reply: role of contrast-enhanced ultrasound (CEUS) in paediatric practice: an EFSUMB position statement. Ultraschall Med. 2017;38:33.PubMedGoogle Scholar
  11. 11.
    Harkanyi Z. Potential applications of contrast-enhanced ultrasound in pediatric patients. Ultrasound Clin. 2013;2013(3):403–22.CrossRefGoogle Scholar
  12. 12.
    Piscaglia F, Bolondi L. The safety of Sonovue in abdominal applications: retrospective analysis of 23188 investigations. Ultrasound Med Biol. 2006;32(9):1369–75.CrossRefGoogle Scholar
  13. 13.
    McCarville MB, Kaste SC, Hoffer FA, et al. Contrast-enhanced sonography of malignant pediatric abdominal and pelvic solid tumors: preliminary safety and feasibility data. Pediatr Radiol. 2012;42(7):824–33.CrossRefGoogle Scholar
  14. 14.
    Riccabona M. Application of a second-generation US contrast agent in infants and children--a European questionnaire-based survey. Pediatr Radiol. 2012;42(12):1471–80.CrossRefGoogle Scholar
  15. 15.
    D’Onofrio M, Crosara S, De Robertis R, et al. Malignant focal liver lesions at contrast-enhanced ultrasonography and magnetic resonance with hepatospecific contrast agent. Ultrasound. 2014;22(2):91–8.CrossRefGoogle Scholar
  16. 16.
    Quaia E, De Paoli L, Angileri R, Cabibbo B, Cova MA. Indeterminate solid hepatic lesions identified on non-diagnostic contrast-enhanced computed tomography: assessment of the additional diagnostic value of contrast-enhanced ultrasound in the non-cirrhotic liver. Eur J Radiol. 2014;83(3):456–62.CrossRefGoogle Scholar
  17. 17.
    Trillaud H, Bruel JM, Valette PJ, et al. Characterization of focal liver lesions with SonoVue-enhanced sonography: international multicenter-study in comparison to CT and MRI. World J Gastroenterol. 2009;15(30):3748–56.CrossRefGoogle Scholar
  18. 18.
    Stenzel M. Intravenous contrast-enhanced sonography in children and adolescents - a single center experience. J Ultrason. 2013;13(53):133–44.CrossRefGoogle Scholar
  19. 19.
    Pschierer K, Grothues D, Rennert J, et al. Evaluation of the diagnostic accuracy of CEUS in children with benign and malignant liver lesions and portal vein anomalies. Clin Hemorheol Microcirc. 2015;61(2):333–45.CrossRefGoogle Scholar
  20. 20.
    Smith EA, Salisbury S, Martin R, Towbin AJ. Incidence and etiology of new liver lesions in pediatric patients previously treated for malignancy. AJR Am J Roentgenol. 2012;199(1):186–91.CrossRefGoogle Scholar
  21. 21.
    Dietrich CF, Maddalena ME, Cui XW, Schreiber-Dietrich D, Ignee A. Liver tumor characterization--review of the literature. Ultraschall Med. 2012;33(Suppl 1):S3–10.PubMedGoogle Scholar
  22. 22.
    Weinberg AG, Finegold MJ. Primary hepatic tumors of childhood. Hum Pathol. 1983;14(6):512–37.CrossRefGoogle Scholar
  23. 23.
    Chiorean L, Cui XW, Tannapfel A, et al. Benign liver tumors in pediatric patients - review with emphasis on imaging features. World J Gastroenterol. 2015;21(28):8541–61.CrossRefGoogle Scholar
  24. 24.
    Meyers RL. Tumors of the liver in children. Surg Oncol. 2007;16(3):195–203.CrossRefGoogle Scholar
  25. 25.
    Yikilmaz A, George M, Lee EY. Pediatric hepatobiliary neoplasms: an overview and update. Radiol Clin North Am. 2017;55(4):741–66.CrossRefGoogle Scholar
  26. 26.
    Roebuck DJ, Yang WT, Lam WW, Stanley P. Hepatobiliary rhabdomyosarcoma in children: diagnostic radiology. Pediatr Radiol. 1998;28(2):101–8.CrossRefGoogle Scholar
  27. 27.
    Mork H, Ignee A, Schuessler G, Ott M, Dietrich CF. Analysis of neuroendocrine tumour metastases in the liver using contrast enhanced ultrasonography. Scand J Gastroenterol. 2007;42(5):652–62.CrossRefGoogle Scholar
  28. 28.
    Trojan J, Hammerstingl R, Engels K, Schneider AR, Zeuzem S, Dietrich CF. Contrast-enhanced ultrasound in the diagnosis of malignant mesenchymal liver tumors. J Clin Ultrasound. 2010;38(5):227–31.PubMedGoogle Scholar
  29. 29.
    Liu GJ, Xu HX, Lu MD, et al. Correlation between enhancement pattern of hepatocellular carcinoma on real-time contrast-enhanced ultrasound and tumour cellular differentiation on histopathology. Br J Radiol. 2007;80(953):321–30.CrossRefGoogle Scholar
  30. 30.
    Dietrich CF, Averkiou MA, Correas JM, Lassau N, Leen E, Piscaglia F. An EFSUMB introduction into dynamic contrast-enhanced ultrasound (DCE-US) for quantification of tumour perfusion. Ultraschall Med. 2012;33(4):344–51.CrossRefGoogle Scholar
  31. 31.
    Al Bunni F, Deganello A, Sellars ME, Schulte KM, Al-Adnani M, Sidhu PS. Contrast-enhanced ultrasound (CEUS) appearances of an adrenal phaeochromocytoma in a child with Von Hippel-Lindau disease. J Ultrasound. 2014;17(4):307–11.CrossRefGoogle Scholar
  32. 32.
    Ragel M, Nedumaran A, Makowska-Webb J. Prospective comparison of use of contrast-enhanced ultrasound and contrast-enhanced computed tomography in the Bosniak classification of complex renal cysts. Ultrasound. 2016;24(1):6–16.CrossRefGoogle Scholar
  33. 33.
    Drudi FM, Valentino M, Bertolotto M, et al. CEUS time intensity curves in the differentiation between leydig cell carcinoma and seminoma: a multicenter study. Ultraschall Med. 2016;37(2):201–5.PubMedGoogle Scholar
  34. 34.
    Zhang Y, Luo YK, Zhang MB, Li J, Li J, Tang J. Diagnostic accuracy of contrast-enhanced ultrasound enhancement patterns for thyroid nodules. Med Sci Monit. 2016;22:4755–64.CrossRefGoogle Scholar
  35. 35.
    Defortescu G, Cornu JN, Bejar S, et al. Diagnostic performance of contrast-enhanced ultrasonography and magnetic resonance imaging for the assessment of complex renal cysts: a prospective study. Int J Urol. 2017;24(3):184–9.CrossRefGoogle Scholar
  36. 36.
    Wei SP, Xu CL, Zhang Q, et al. Contrast-enhanced ultrasound for differentiating benign from malignant solid small renal masses: comparison with contrast-enhanced CT. Abdom Radiol (NY). 2017;42:2135.CrossRefGoogle Scholar
  37. 37.
    Sanz E, Hevia V, Gomez V, et al. Renal complex cystic masses: usefulness of contrast-enhanced ultrasound (CEUS) in their assessment and its agreement with computed tomography. Curr Urol Rep. 2016;17(12):89.CrossRefGoogle Scholar
  38. 38.
    Barr RG, Peterson C, Hindi A. Evaluation of indeterminate renal masses with contrast-enhanced US: a diagnostic performance study. Radiology. 2014;271(1):133–42.CrossRefGoogle Scholar
  39. 39.
    Edenberg J, Gloersen K, Osman HA, Dimmen M, Berg GV. The role of contrast-enhanced ultrasound in the classification of CT-indeterminate renal lesions. Scand J Urol. 2016;50(6):445–51.CrossRefGoogle Scholar
  40. 40.
    Putz FJ, Erlmeier A, Wiesinger I, et al. Contrast-enhanced ultrasound (CEUS) in renal imaging at an interdisciplinary ultrasound centre: possibilities of dynamic microvascularisation and perfusion. Clin Hemorheol Microcirc. 2017;66:293.CrossRefGoogle Scholar
  41. 41.
    Liu Y, Xu Y, Cheng W, Liu X. Quantitative contrast-enhanced ultrasonography for the differential diagnosis of endometrial hyperplasia and endometrial neoplasms. Oncol Lett. 2016;12(5):3763–70.CrossRefGoogle Scholar
  42. 42.
    Gruber L, Loizides A, Luger AK, et al. Soft-tissue tumor contrast enhancement patterns: diagnostic value and comparison between ultrasound and MRI. AJR Am J Roentgenol. 2017;208(2):393–401.CrossRefGoogle Scholar
  43. 43.
    Guo S, Xu P, Zhou A, et al. Contrast-enhanced ultrasound differentiation between low and high-grade bladder urothelial carcinoma and correlation with tumor microvessel density. J Ultrasound Med. 2017;36:2287.CrossRefGoogle Scholar
  44. 44.
    Cantisani V, Bertolotto M, Weskott HP, et al. Growing indications for CEUS: the kidney, testis, lymph nodes, thyroid, prostate, and small bowel. Eur J Radiol. 2015;84(9):1675–84.CrossRefGoogle Scholar
  45. 45.
    Knieling F, Strobel D, Rompel O, et al. Spectrum, applicability and diagnostic capacity of contrast-enhanced ultrasound in pediatric patients and young adults after intravenous application - a retrospective trial. Ultraschall Med. 2016;37(6):619–26.CrossRefGoogle Scholar
  46. 46.
    Seitz K, Strobel D. A milestone: approval of CEUS for diagnostic liver imaging in adults and children in the USA. Ultraschall Med. 2016;37(3):229–32.CrossRefGoogle Scholar
  47. 47.
    Seitz K, Strobel D, Bernatik T, et al. Contrast-enhanced ultrasound (CEUS) for the characterization of focal liver lesions - prospective comparison in clinical practice: CEUS vs. CT (DEGUM multicenter trial). Parts of this manuscript were presented at the Ultrasound Dreilandertreffen 2008, Davos. Ultraschall Med. 2009;30(4):383–9.CrossRefGoogle Scholar
  48. 48.
    Mori N, Mugikura S, Takahashi S, et al. Quantitative analysis of contrast-enhanced ultrasound imaging in invasive breast cancer: a novel technique to obtain histopathologic information of microvessel density. Ultrasound Med Biol. 2017;43(3):607–14.CrossRefGoogle Scholar
  49. 49.
    Tai CJ, Huang MT, Wu CH, et al. Contrast-enhanced ultrasound and computed tomography assessment of hepatocellular carcinoma after transcatheter arterial chemo-embolization: a systematic review. J Gastrointestin Liver Dis. 2016;25(4):499–507.PubMedGoogle Scholar
  50. 50.
    Ishii T, Numata K, Hao Y, et al. Evaluation of hepatocellular carcinoma tumor vascularity using contrast-enhanced ultrasonography as a predictor for local recurrence following radiofrequency ablation. Eur J Radiol. 2017;89:234–41.CrossRefGoogle Scholar
  51. 51.
    Bartolotta TV, Taibbi A, Picone D, Anastasi A, Midiri M, Lagalla R. Detection of liver metastases in cancer patients with geographic fatty infiltration of the liver: the added value of contrast-enhanced sonography. Ultrasonography. 2017;36(2):160–9.CrossRefGoogle Scholar
  52. 52.
    Pandey P, Lewis H, Pandey A, et al. Updates in hepatic oncology imaging. Surg Oncol. 2017;26(2):195–206.CrossRefGoogle Scholar
  53. 53.
    Granata V, Fusco R, Catalano O, et al. Diagnostic accuracy of magnetic resonance, computed tomography and contrast enhanced ultrasound in radiological multimodality assessment of peribiliary liver metastases. PLoS One. 2017;12(6):e0179951.CrossRefGoogle Scholar
  54. 54.
    Maj E, Papiernik D, Wietrzyk J. Antiangiogenic cancer treatment: the great discovery and greater complexity (Review). Int J Oncol. 2016;49(5):1773–84.CrossRefGoogle Scholar
  55. 55.
    Hendry SA, Farnsworth RH, Solomon B, Achen MG, Stacker SA, Fox SB. The role of the tumor vasculature in the host immune response: implications for therapeutic strategies targeting the tumor microenvironment. Front Immunol. 2016;7:621.CrossRefGoogle Scholar
  56. 56.
    Lee SC, Grant E, Sheth P, et al. Accuracy of contrast-enhanced ultrasound compared with magnetic resonance imaging in assessing the tumor response after neoadjuvant chemotherapy for breast cancer. J Ultrasound Med. 2017;36(5):901–11.CrossRefGoogle Scholar
  57. 57.
    Lassau N, Bonastre J, Kind M, et al. Validation of dynamic contrast-enhanced ultrasound in predicting outcomes of antiangiogenic therapy for solid tumors: the French multicenter support for innovative and expensive techniques study. Invest Radiol. 2014;49(12):794–800.CrossRefGoogle Scholar
  58. 58.
    Atri M, Hudson JM, Sinaei M, et al. Impact of acquisition method and region of interest placement on inter-observer agreement and measurement of tumor response to targeted therapy using dynamic contrast-enhanced ultrasound. Ultrasound Med Biol. 2016;42(3):763–8.CrossRefGoogle Scholar
  59. 59.
    Amioka A, Masumoto N, Gouda N, et al. Ability of contrast-enhanced ultrasonography to determine clinical responses of breast cancer to neoadjuvant chemotherapy. Jpn J Clin Oncol. 2016;46(4):303–9.CrossRefGoogle Scholar
  60. 60.
    Saracco A, Szabo BK, Tanczos E, Bergh J, Hatschek T. Contrast-enhanced ultrasound (CEUS) in assessing early response among patients with invasive breast cancer undergoing neoadjuvant chemotherapy. Acta Radiol. 2017;58(4):394–402.CrossRefGoogle Scholar
  61. 61.
    Matsui S, Kudo M, Kitano M, Asakuma Y. Evaluation of the response to chemotherapy in advanced gastric cancer by contrast-enhanced harmonic EUS. Hepatogastroenterology. 2015;62(139):595–8.PubMedGoogle Scholar
  62. 62.
    Peng C, Liu LZ, Zheng W, et al. Can quantitative contrast-enhanced ultrasonography predict cervical tumor response to neoadjuvant chemotherapy? Eur J Radiol. 2016;85(11):2111–8.CrossRefGoogle Scholar
  63. 63.
    Jia WR, Tang L, Wang DB, et al. Three-dimensional contrast-enhanced ultrasound in response assessment for breast cancer: a comparison with dynamic contrast-enhanced magnetic resonance imaging and pathology. Sci Rep. 2016;6:33832.CrossRefGoogle Scholar
  64. 64.
    Ohno N, Miyati T, Yamashita M, Narikawa M. Quantitative assessment of tissue perfusion in hepatocellular carcinoma using perflubutane dynamic contrast-enhanced ultrasonography: a preliminary study. Diagnostics. 2015;5(2):210–8.CrossRefGoogle Scholar
  65. 65.
    Mogensen MB, Hansen ML, Henriksen BM, et al. Dynamic contrast-enhanced ultrasound of colorectal liver metastases as an imaging modality for early response prediction to chemotherapy. Diagnostics. 2017;7(2)Google Scholar
  66. 66.
    Wu Z, Yang X, Chen L, et al. Anti-angiogenic therapy with contrast-enhanced ultrasound in colorectal cancer patients with liver metastasis. Medicine. 2017;96(20):e6731.CrossRefGoogle Scholar
  67. 67.
    McCarville MB, Coleman JL, Guo J, et al. Use of quantitative dynamic contrast-enhanced ultrasound to assess response to antiangiogenic therapy in children and adolescents with solid malignancies: a pilot study. AJR Am J Roentgenol. 2016;206(5):933–9.CrossRefGoogle Scholar
  68. 68.
    Ueda N, Nagira H, Sannomiya N, et al. Contrast-enhanced ultrasonography in evaluation of the therapeutic effect of chemotherapy for patients with liver metastases. Yonago Acta Med. 2016;59(4):255–61.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Guvener N, Appold L, de Lorenzi F, et al. Recent advances in ultrasound-based diagnosis and therapy with micro- and nanometer-sized formulations. Methods. 2017;130:4.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • M. Beth McCarville
    • 1
    Email author
  • Annamaria Deganello
    • 2
  • Zoltan Harkanyi
    • 3
  1. 1.Department of Diagnostic ImagingSt. Jude Children’s Research HospitalMemphisUSA
  2. 2.Department of RadiologyKing’s College HospitalLondonUK
  3. 3.Department of RadiologyHeim Pal Children’s HospitalBudapestHungary

Personalised recommendations