Advertisement

Whole-Body MRI in Pediatric Oncology

  • Rutger A. J. NievelsteinEmail author
  • Annemieke S. Littooij
Chapter
Part of the Pediatric Oncology book series (PEDIATRICO)

Abstract

Whole-body imaging plays a crucial role in the diagnosis and follow-up of pediatric malignancies, as tumor spread may involve different anatomical regions. Until recently, ultrasonography (US) and computed tomography (CT) have been the imaging technique of choice in children with cancer, but nowadays there is an increasing interest in the use of functional imaging techniques like single-photon emission computed tomography (SPECT) and positron emission tomography (PET). By combining these latter techniques with CT, it becomes possible to simultaneously acquire imaging data on the biological behavior of tumor as well as the anatomical localization and extent of tumor spread. Because of the small but not negligible risk of radiation-induced secondary cancers and the significantly improved overall survival rates of children with cancer, there is an increasing interest in the use of radiation-free imaging techniques such as magnetic resonance imaging (MRI). MRI allows for acquiring images with a high spatial resolution and excellent soft tissue contrast throughout the body. Moreover, recent technological advances have resulted in fast diagnostic sequences for whole-body MR imaging, including functional techniques such as diffusion-weighted imaging (DWI). In this chapter, the current status of the technique, major clinical applications, and future perspectives of whole-body MRI in children with cancer will be discussed.

Keywords

MRI Whole-body MRI Imaging DWI Pediatric oncology 

References

  1. 1.
    Carty F, Shortt CP, Shelly MJ, Eustace SJ, O’Connell MJ. Whole-body imaging modalities in oncology. Semin Musculoskelet Radiol. 2010;14(1):68–85.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Goo HW. Regional and whole-body imaging in pediatric oncology. Pediatr Radiol. 2011;41(Suppl 1):S186–94.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Uslu L, Donig J, Link M, Rosenberg J, Quon A, Daldrup-Link HE. Value of 18F-FDG PET and PET/CT for evaluation of pediatric malignancies. J Nucl Med. 2015;56(2):274–86.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Darge K, Jaramillo D, Siegel MJ. Whole-body MRI in children: current status and future applications. Eur J Radiol. 2008;68:289–98.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Chavhan GB, Babyn PS. Whole body MR imaging in children: principles, technique, current applications, and future directions. Radiographics. 2011;31:1757–72.PubMedCrossRefGoogle Scholar
  6. 6.
    Eutsler EP, Khanna G. Whole-body magnetic resonance imaging in children: technique and clinical applications. Pediatr Radiol. 2016;46:858–72.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Nievelstein RA, Littooij AS. Whole-body MRI in paediatric oncology. Radiol Med. 2016;121(5):442–53.PubMedCrossRefGoogle Scholar
  8. 8.
    Smith EA, Dillman JR. Current role of body MRI in pediatric oncology. Pediatr Radiol. 2016;46(6):873–80.PubMedCrossRefGoogle Scholar
  9. 9.
    Takahara T, Imai Y, Yamashita T, Yasuda S, Nasu S, Van Cauteren M. Diffusion weighted whole body imaging with background body signal suppression (DWIBS): technical improvement using free breathing, STIR and high resolution 3D display. Radiat Med. 2004;22(4):275–82.PubMedGoogle Scholar
  10. 10.
    Kwee TC, Takahara T, Vermoolen MA, Bierings MB, Mali WP, Nievelstein RA. Whole-body diffusion-weighted imaging for staging malignant lymphoma in children. Pediatr Radiol. 2010;40(10):1592–602.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Malayeri AA, El Khouli RH, Zaheer A, Jacobs MA, Corona-Villalobos CP, Kamel IR, Macura KJ. Principles and applications of diffusion-weighted imaging in cancer detection, staging, and treatment follow-up. Radiographics. 2011;31(6):1773–91.PubMedCrossRefGoogle Scholar
  12. 12.
    Padhani AR, Koh DM, Collins DJ. Whole-body diffusion-weighted MR imaging in cancer: current status and research directions. Radiology. 2011;261:700–18.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Koh DM, Blackledge M, Padhani AR, Takahara T, Kwee TC, Leach MO, Collins DJ. Whole-body diffusion-weighted MRI: tips, tricks, and pitfalls. AJR Am J Roentgenol. 2012;199(2):252–62.PubMedCrossRefGoogle Scholar
  14. 14.
    Kellenberger CJ, Miller SF, Khan M, Gilday DL, Weitzman S, Babyn PS. Initial experience with FSE STIR whole-body MR imaging for staging lymphoma in children. Eur Radiol. 2004;14(10):1829–41.PubMedCrossRefGoogle Scholar
  15. 15.
    Goo HW, Choi SH, Ghim T, Moon HN, Seo JJ. Whole-body MRI of paediatric malignant tumours: comparison with conventional oncological imaging methods. Pediatr Radiol. 2005;35:766–73.PubMedCrossRefGoogle Scholar
  16. 16.
    Ley S, Ley-Zaporozhan J, Schenk JP. Whole-body MRI in the pediatric patient. Eur J Radiol. 2009;70:442–51.PubMedCrossRefGoogle Scholar
  17. 17.
    Siegel MJ, Acharyya S, Hoffer FA, Wyly JB, Friedmann AM, Snyder BS, et al. Whole-body MR imaging for staging of malignant tumours in pediatric patients: results of the American College of Radiology Imaging Network 6660 trial. Radiology. 2013;266:599–609.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Atkin KL, Ditchfield MR. The role of whole-body MRI in pediatric oncology. J Pediatr Hematol Oncol. 2014;36:342–52.PubMedCrossRefGoogle Scholar
  19. 19.
    Canale S, Vilcot L, Ammari S, Lemery M, Bidault F, Balleyguier C, et al. Whole body MRI in paediatric oncology. Diagn Interv Imaging. 2014;95:541–50.PubMedCrossRefGoogle Scholar
  20. 20.
    Klenck C, Gawande R, Uslu L, Khurana A, Qiu D, Quon A, et al. Ionising radiation-free whole-body MRI versus (18)F-fluorodeoxyglucose PET/CT scans for children and young adults with cancer: a prospective, non-randomised, single-centre study. Lancet Oncol. 2014;15(3):275–85.CrossRefGoogle Scholar
  21. 21.
    Guimarães MD, Noschang J, Teixeira SR, Santos MK, Lederman HM, Tostes V, et al. Whole-body MRI in pediatric patients with cancer. Cancer Imaging. 2017;17:6–12.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Takahara T, Kwee TC, Kifune S, Ochiai R, Sakamoto T, Niwa T, et al. Whole-body MRI using a sliding table and repositioning surface coil approach. Eur Radiol. 2010;20:1366–73.PubMedCrossRefGoogle Scholar
  23. 23.
    Goo HW. Whole-body MRI in children: current imaging techniques and clinical applications. Korean J Radiol. 2015;16(5):973–85.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Azzedine B, Kahina MB, Dimitri P, Christophe P, Alain D, Claude M. Whole-body diffusion-weighted MRI for staging lymphoma at 3.0T: comparative study with MR imaging at 1.5T. Clin Imaging. 2015;39:104–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Kellenberger CJ, Epelman M, Miller SF, Babyn PS. Fast STIR whole-body MR imaging in children. Radiographics. 2004;24:1317–30.PubMedCrossRefGoogle Scholar
  26. 26.
    Merlini L, Carpentier M, Ferrey S, Anooshiravani M, Poletti PA, Hanquinet S. Whole-body MRI in children: would a 3D STIR sequence alone be sufficient for investigating common paediatric conditions? A comparative study. Eur J Radiol. 2017;88:155–62.PubMedCrossRefGoogle Scholar
  27. 27.
    Mazumdar A, Siegel MJ, Narra V, Luchtman-Jones L. Whole-body fast inversion recovery MR imaging of small cell neoplasms in pediatric patients: a pilot study. AJR Am J Roentgenol. 2002;179(5):1261–6.PubMedCrossRefGoogle Scholar
  28. 28.
    Punwani S, Taylor SA, Bainbridge A, Prakash V, Bandula S, De Vita E, et al. Pediatric and adolescent lymphoma: comparison of whole-body STIR half-Fourier RARE MR imaging with an enhanced PET/CT reference for initial staging. Radiology. 2010;255(1):182–90.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Costelloe CM, Madewell JE, Kundra V, Harrell RK, Bassett RL Jr, Ma J. Conspicuity of bone metastases on fast Dixon-based multisequence whole-body MRI: clinical utility per sequence. Magn Reson Imaging. 2013;31:669–75.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Ma J, Costelloe CM, Madewell JE, Hortobagyi GN, Green MC, Cao G, et al. Fast dixon-based multisequence and multiplanar MRI for whole-body detection of cancer metastases. J Magn Reson Imaging. 2009;29(5):1154–62.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Vasanawala SS, Madhuranthakam AJ, Venkatesan R, Sonik A, Lai P, Brau AC. Volumetric fat-water separated T2-weighted MRI. Pediatr Radiol. 2011;41(7):875–83.PubMedCrossRefGoogle Scholar
  32. 32.
    Daldrup-Link HE, Franzius C, Link TM, Laukamp D, Sciuk J, Jürgens H, et al. Whole-body MR imaging for detection of bone metastases in children and young adults: comparison with skeletal scintigraphy and FDG PET. AJR Am J Roentgenol. 2001;177(1):229–36.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Schmidt GP, Schoenberg SO, Reiser MF, Baur-Melnyk A. Whole-body MR imaging of bone marrow. Eur J Radiol. 2005;55(1):33–40.PubMedCrossRefGoogle Scholar
  34. 34.
    Manenti G, Cicciò C, Squillaci E, Strigari L, Calabria F, Danieli R, et al. Role of combined DWIBS/3D-CE-T1w whole-body MRI in tumor staging: comparison with PET-CT. Eur J Radiol. 2012;81(8):1917–25.PubMedCrossRefGoogle Scholar
  35. 35.
    Kwee TC, Takahara T, Ochiai R, Nievelstein RAJ, Luijten PR. Diffusion-weighted whole-body imaging with background body signal suppression (DWIBS): features and potential applications in oncology. Eur Radiol. 2008;18:1937–52.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Attariwala R, Picker W. Whole body MRI: improved lesion detection and characterization with diffusion weighted techniques. J Magn Reson Imaging. 2013;38:253–68.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Parameswaran BK, Lau E, Ferris NJ. Recognising pitfalls in assessment of tumours by diffusion-weighted MRI: a pictorial essay. J Med Imaging Radiat Oncol. 2015;59(2):188–94.PubMedCrossRefGoogle Scholar
  38. 38.
    Gu J, Chan T, Zhang J, Leung AYH, Kwong YL, Khong PL. Whole-body diffusion-weighted imaging: the added value to whole-body MRI at initial diagnosis of lymphoma. AJR Am J Roentgenol. 2011;197:W384–91.PubMedCrossRefGoogle Scholar
  39. 39.
    Li B, Li Q, Nie W, Liu S. Diagnostic value of whole-body diffusion-weighted magnetic resonance imaging for detection of primary and metastatic malignancies: a meta-analysis. Eur J Radiol. 2014;83(2):338–44.PubMedCrossRefGoogle Scholar
  40. 40.
    Toledano-Massiah S, Luciani A, Itti E, Zerbib P, Vignaud A, Belhadj K, et al. Whole-body diffusion-weighted imaging in Hodgkin lymphoma and diffuse large B-cell lymphoma. Radiographics. 2015;35:747–64.PubMedCrossRefGoogle Scholar
  41. 41.
    Kwee TC, Takahara T, Luijten PR, Nievelstein RA. ADC measurements of lymph nodes: inter- and intra-observer reproducibility study and an overview of the literature. Eur J Radiol. 2010;75(2):215–20.PubMedCrossRefGoogle Scholar
  42. 42.
    Vermoolen MA, Kwee TC, Nievelstein RAJ. Apparent diffusion coefficient measurements in the differentiation between benign and malignant lesions: a systematic review. Insights Imaging. 2012;3:395–409.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Daldrup-Link HE. Ten things you might not know about iron oxide nanoparticles. Radiology. 2017;284(3):616–29.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Hirsch W, Kluge R, et al. Preliminary results in whole body MRI in children - a prospective study [abstract]. Pediatr Radiol. 2005;35:S89.CrossRefGoogle Scholar
  45. 45.
    Zaitsev M, Maclaren J, Herbst M. Motion artifacts in MRI: a complex problem with many partial solutions. J Magn Reson Imaging. 2015;42(4):887–901.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Burdiles A, Babyn PS. Pediatric bone marrow MR imaging. Magn Reson Imaging Clin N Am. 2009;17:391–409.PubMedCrossRefGoogle Scholar
  47. 47.
    Murphy DT, Moynagh MR, Eustace SJ, Kavanagh EC. Bone marrow. Magn Reson Imaging Clin N Am. 2010;18:727–35.PubMedCrossRefGoogle Scholar
  48. 48.
    Guillerman RP. Marrow: red, yellow and bad. Pediatr Radiol. 2013;43:S181–92.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Laor T, Jaramillo D. MR imaging insights into skeletal maturation: what is normal? Radiology. 2009;250(1):28–38.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Ryan SP, Weinberger E, White KS, Shaw DWW, Patterson K, Nazar-Stewart V, Miser J. MR imaging of bone marrow in children with osteosarcoma: effect of granulocyte colony-stimulating factor. AJR Am J Roentgenol. 1995;165:915–20.PubMedCrossRefGoogle Scholar
  51. 51.
    Shabshin N, Schweitzer ME, Morrison WB, Carrino JA, Keller MS, Grissom LE. High-signal T2 changes of the bone marrow of the foot and ankle in children: red marrow or traumatic changes? Pediatr Radiol. 2006;36:670–6.PubMedCrossRefGoogle Scholar
  52. 52.
    Ording-Müller LS, Avenarius D, Olsen OE. High signal in bone marrow at diffusion-weighted imaging with body background suppression (DWIBS) in healthy children. Pediatr Radiol. 2011;41(2):221–6.PubMedCrossRefGoogle Scholar
  53. 53.
    Zajick DC, Morrison WB, Schweitzer ME, Parellada JA, Carrino JA. Benign and malignant processes: normal values and differentiation with chemical shift MR imaging in vertebral marrow. Radiology. 2005;237:590–6.PubMedCrossRefGoogle Scholar
  54. 54.
    Meyer JS, Siegel MJ, Farooqui SO, Jaramillo D, Fletcher BD, Hoffer FA. Which MRI sequence of the spine best reveals bone-marrow metastases of neuroblastoma? Pediatr Radiol. 2005;35(8):778–85.PubMedCrossRefGoogle Scholar
  55. 55.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65(1):5–29.PubMedCrossRefGoogle Scholar
  56. 56.
    Cheson BD, Fisher RI, Barrington SF, Cavalli F, Schwartz LH, Zucca E, et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol. 2014;32(27):3059–68.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Johnson SA, Kumar A, Matasar MJ, Schöder H, Rademaker J. Imaging for staging and response assessment in lymphoma. Radiology. 2015;276(2):323–38.PubMedCrossRefGoogle Scholar
  58. 58.
    Rosolen A, Perkins SL, Pinkerton CR, Guillerman RP, Sandlund JT, Patte C, et al. Revised international pediatric non-Hodgkin lymphoma staging system. J Clin Oncol. 2015;33(18):2112–8.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Littooij AS, Kwee TC, Barber I, Vermoolen MA, Enriquez G, Zsiros J, et al. Whole-body MRI for initial staging of paediatric lymphoma: prospective comparison to an FDG-PET/CT-based reference standard. Eur Radiol. 2014;24(5):1153–65.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Lin C, Luciani A, Itti E, El-Gnaoui T, Vignaud A, Beaussart P, et al. Whole-body diffusion-weighted magnetic resonance imaging with apparent diffusion coefficient mapping for staging patients with diffuse large B-cell lymphoma. Eur Radiol. 2010;20(8):2027–38.PubMedCrossRefGoogle Scholar
  61. 61.
    Stéphane V, Samuel B, Vincent D, Joelle G, Remy P, Francois GG, Jean-Pierre T. Comparison of PET-CT and magnetic resonance diffusion weighted imaging with body suppression (DWIBS) for initial staging of malignant lymphomas. Eur J Radiol. 2013;82(11):2011–7.PubMedCrossRefGoogle Scholar
  62. 62.
    Kwee TC, van Ufford HM, Beek FJ, Takahara T, Uiterwaal CS, Bierings MB, et al. Whole-body MRI, including diffusion-weighted imaging, for the initial staging of malignant lymphoma: comparison to computed tomography. Invest Radiol. 2009;44(10):683–90.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Sun N, Zhao J, Qiao W, Wang T. Predictive value of interim PET/CT in DLBCL treated with R-CHOP: meta-analysis. Biomed Res Int. 2015;2015:648572.  https://doi.org/10.1155/2015/648572.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Adams HJ, Nievelstein RA, Kwee TC. Prognostic value of interim FDG-PET in Hodgkin lymphoma: systematic review and meta-analysis. Br J Haematol. 2015;170(3):356–66.PubMedCrossRefGoogle Scholar
  65. 65.
    Mayerhoefer ME, Karanikas G, Kletter K, Prosch H, Kiesewetter B, Skrabs C, et al. Evaluation of diffusion-weighted magnetic resonance imaging for follow-up and treatment response assessment of lymphoma: results of an 18F-FDG-PET/CT-controlled prospective study in 64 patients. Clin Cancer Res. 2015;21(11):2506–13.PubMedCrossRefGoogle Scholar
  66. 66.
    Punwani S, Prakash V, Bainbridge A, Taylor SA, Bandula S, Olsen OE, et al. Quantitative diffusion weighted MRI: a functional biomarker of nodal disease in Hodgkin lymphoma? Cancer Biomark. 2010;7(4):249–59.PubMedGoogle Scholar
  67. 67.
    Lin C, Itti E, Luciani A, Zegai B, Lin SJ, Kuhnowski F, et al. Whole-body diffusion-weighted imaging with apparent diffusion coefficient mapping for treatment response assessment in patients with diffuse large B-cell lymphoma: pilot study. Invest Radiol. 2011;46(5):341–9.PubMedGoogle Scholar
  68. 68.
    Punwani S, Taylor SA, Saad ZZ, Bainbridge A, Groves A, Daw S, et al. Diffusion-weighted MRI of lymphoma: prognostic utility and implications for PET/MRI? Eur J Nucl Med Mol Imaging. 2013;240(3):373–85.CrossRefGoogle Scholar
  69. 69.
    Wu X, Pertovaara H, Dastidar P, Vornanen M, Paavolainen L, Järvenpää R, et al. ADC measurements in diffuse large B-cell lymphoma and follicular lymphoma: a DWI and cellularity study. Eur J Radiol. 2013;82:e158–64.PubMedCrossRefGoogle Scholar
  70. 70.
    Siegel MJ, Jokerst CE, Rajderkar D, Hildebolt CF, Goyal S, Dehdashti F, et al. Diffusion weighted MRI for staging and evaluating response in diffuse large B-cell lymphoma: a pilot study. NMR Biomed. 2014;27(6):681–91.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Allen CE, Kelly KM, Bollard CM. Pediatric lymphomas and histiocytic disorders of childhood. Pediatr Clin North Am. 2015;62:139–65.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Azouz EM, Saigal G, Rodriguez MM, Podda A. Langerhans’ cell histiocytosis: pathology, imaging and treatment of skeletal involvement. Pediatr Radiol. 2005;35:103–15.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Van Nieuwenhuyse JP, Clapuyt P, Malghem J, Everarts P, Melin J, Pauwels S, et al. Radiographic skeletal survey and radionuclide bone scan in Langerhans cell histiocytosis of bone. Pediatr Radiol. 1996;26(10):734–8.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Binkovitz LA, Olshefski RS, Adler BH. Coincidence FDG-PET in the evaluation of Langerhans’ cell histiocytosis: preliminary findings. Pediatr Radiol. 2003;33:598–602.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Phillips M, Allen C, Gerson P, McClain K. Comparison of FDG-PET scans to conventional radiography and bone scans in management of Langerhans cell histiocytosis. Pediatr Blood Cancer. 2009;52:97–101.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Mueller WP, Melzer HI, Schmid I, Coppenrath E, Bartenstein P, Pfluger T. The diagnostic value of 18F-FDG PET and MRI in paediatric histiocytosis. Eur J Nucl Med Mol Imaging. 2013;40:356–63.PubMedCrossRefGoogle Scholar
  77. 77.
    Goo HW, Yang DH, Ra YS, Song JS, Im HJ, Seo JJ, et al. Whole-body MRI of Langerhans cell histiocytosis: comparison with radiography and bone scintigraphy. Pediatr Radiol. 2006;36:1019–31.PubMedCrossRefGoogle Scholar
  78. 78.
    Steinborn M, Wörtler K, Nathrath M, Schöniger M, Hahn H, Rummeny EJ. Whole-body MRI in children with langerhans cell histiocytosis for the evaluation of the skeletal system. RoFo. 2008;180:646–53.PubMedCrossRefGoogle Scholar
  79. 79.
    Papaioannou G, McHugh K. Neuroblastoma in childhood: review and radiological findings. Cancer Imaging. 2005;5:116–27.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Monclair T, Brodeur GM, Ambros PF, Brisse HJ, Cecchetto G, Holmes K, et al. The International Neuroblastoma Risk Group (INRG) staging system: an INRG Task Force report. J Clin Oncol. 2009;27(2):298–303.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Brisse HJ, McCarville MB, Granata C, Krug KB, Wootton-Gorges SL, Kanegawa K, et al. Guidelines for imaging and staging of neuroblastic tumors: consensus report from the International Neuroblastoma Risk Group Project. Radiology. 2011;261(1):243–57.PubMedCrossRefGoogle Scholar
  82. 82.
    Goo HW. Whole-body MRI of neuroblastoma. Eur J Radiol. 2010;75:306–14.PubMedCrossRefGoogle Scholar
  83. 83.
    Gahr N, Darge K, Hahn G, Kreher BW, von Buiren M, Uhl M. Diffusion-weighted MRI for differentiation of neuroblastoma and ganglioneuroblastoma/ganglioneuroma. Eur J Radiol. 2011;79(3):443–6.PubMedCrossRefGoogle Scholar
  84. 84.
    Pfluger T, Schmied C, Porn U, Leinsinger G, Vollmar C, Dresel S, et al. Integrated imaging using MRI and 123I metaiodobenzylguanidine scintigraphy to improve sensitivity and specificity in the diagnosis of pediatric neuroblastoma. AJR Am J Roentgenol. 2003;181(4):1115–24.PubMedCrossRefGoogle Scholar
  85. 85.
    Furth C, Amthauer H, Denecke T, Ruf J, Henze G, Gutberlet M. Impact of whole-body MRI and FDG-PET on staging and assessment of therapy response in a patient with Ewing sarcoma. Pediatr Blood Cancer. 2006;47:607–11.PubMedCrossRefGoogle Scholar
  86. 86.
    Krohmer S, Sorge I, Krausse A, Kluge R, Bierbach U, Marwede D, et al. Whole-body MRI for primary evaluation of malignant disease in children. Eur J Radiol. 2010;74:256–61.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Gorkem SB, Coskun A, Yikilmaz A, Zurakowski D, Mulkern RV, Lee EY. Evaluation of pediatric thoracic disorders: a comparison of unenhanced fast imaging sequence 1.5T MRI and contrast-enhanced MDCT. AJR Am J Roentgenol. 2013;200:1352–7.PubMedCrossRefGoogle Scholar
  88. 88.
    Burris NS, Johnson KM, Larson PE, Hope MD, Nagle SK, Behr SC, Hope TA. Detection of small pulmonary nodules with ultrashort echo time sequences in oncology patients by using a PET/MR system. Radiology. 2016;278:239–46.PubMedCrossRefGoogle Scholar
  89. 89.
    Mautner VF, Asuagbor FA, Dombi E, Fünsterer C, Kluwe L, Wenzel R, et al. (2008) Assessment of benign tumor burden by whole-body MRI in patients with neurofibromatosis 1. Neuro Oncol. 2008;10:593–8.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Derlin T, Tornquist K, Munster S, Apostolova I, Hagel C, Friedrich RE, et al. Comparative effectiveness of 18F-FDG PET/CT versus whole-body MRI for detection of malignant peripheral nerve sheath tumors in neurofibromatosis type 1. Clin Nucl Med. 2013;38:e19–25.PubMedCrossRefGoogle Scholar
  91. 91.
    Nguyen R, Jett K, Harris GJ, Cai W, Friedman JM, Mautner VF. Benign whole body tumor volume is a risk factor for malignant peripheral nerve sheath tumors in neurofibromatosis type 1. J Neurooncol. 2014;116:307–13.PubMedCrossRefGoogle Scholar
  92. 92.
    Friedman DN, Lis E, Sklar CA, Oeffinger KC, Reppucci M, Fleischut MH, et al. Whole-body magnetic resonance imaging (WB-MRI) as surveillance for subsequent malignancies in survivors of hereditary retinoblastoma: a pilot study. Pediatr Blood Cancer. 2014;61(8):1440–4.PubMedCrossRefGoogle Scholar
  93. 93.
    Jasperson KW, Kohlmann W, Gammon A, Slack H, Buchmann L, Hunt J, et al. Role of rapid sequence whole-body MRI screening in SDH-associated hereditary paraganglioma families. Fam Cancer. 2014;13:257–65.PubMedCrossRefGoogle Scholar
  94. 94.
    Anupindi SA, Bedoya MA, Lindell RB, Rambhatla SJ, Zelley K, Nichols KE, Chauvin NA. (2015) Diagnostic performance of whole-body MRI as a tool for cancer screening in children with genetic cancer-predisposing conditions. AJR Am J Roentgenol. 2015;205:400–8.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Bueno MT, Martínez-Ríos C, la Puente GA, Ahyad RA, Villani A, Druker H, et al. Pediatric imaging in DICER1 syndrome. Pediatr Radiol. 2017;47(10):1292–301.PubMedCrossRefGoogle Scholar
  96. 96.
    Van Engelen K, Villani A, Wasserman JD, Aronoff L, Greer MC, Tijerin Bueno M, et al. DICER1 syndrome: approach to testing and management at a large pediatric tertiary care center. Pediatr Blood Cancer. 2018;65(1)  https://doi.org/10.1002/pbc.26720.
  97. 97.
    Littooij AS, Nikkels PG, Hulsbergen-van Kaa CA, van de Ven CP, van den Heuvel-Eibrink MM, Olsen ØE. Apparent diffusion coefficient as it relates to histopathology findings in postchemotherapy nephroblastoma: a feasibility study. Pediatr Radiol. 2017;47(12):1608–14.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Hirsch FW, Sattler B, Sorge I, Kurch L, Viehweger A, Ritter L, et al. PET/MR in children. Initial clinical experience in paediatric oncology using an integrated PET/MR scanner. Pediatr Radiol. 2013;43:860–75.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Eiber M, Takei T, Souvatzoglou M, Mayerhoefer ME, Fürst S, Gaertner FC, et al. Performance of whole-body integrated 18F-FDG PET/MR in comparison to PET/CT for evaluation of malignant bone lesions. J Nucl Med. 2014;55:191–7.PubMedCrossRefGoogle Scholar
  100. 100.
    Schäfer JF, Gatidis S, Schmidt H, Gückel B, Bezrukov I, Pfannenberg CA, et al. Simultaneous whole-body PET/MR imaging in comparison to PET/CT in pediatric oncology: initial results. Radiology. 2014;273:220–31.PubMedCrossRefGoogle Scholar
  101. 101.
    Offiah AC, Andronikou S, Avni F, Daltro P, Donnelly LF, Jaramillo D, et al. Expert opinion: what are the greatest challenges and barriers to applying evidence-based and practical approaches to preclinical and clinical research in the field of pediatric radiology? Pediatr Radiol. 2014;44(10):1209–12.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Rutger A. J. Nievelstein
    • 1
    Email author
  • Annemieke S. Littooij
    • 1
  1. 1.University Medical Center UtrechtUtrechtThe Netherlands

Personalised recommendations