Advertisement

PET/MRI

  • Sergios GatidisEmail author
  • Jürgen F. Schäfer
Chapter
Part of the Pediatric Oncology book series (PEDIATRICO)

Abstract

PET/MRI is a relatively new hybrid imaging modality that is mainly used for oncologic imaging. The combination of MRI and PET in a single examination is of high potential value especially in pediatric oncologic imaging due to the combination of precise morphologic and metabolic imaging, relatively low radiation exposure, and the potential avoidance of additional imaging studies. The technical complexity of PET/MRI requires multidisciplinary expertise in preparing and performing the examination as well as in image analysis.

PET/MR in children can be performed whenever a PET is indicated, and no contraindications against MRI are present. Thus, PET/MRI can be used for staging, therapy response assessment, and follow-up in children with lymphoma, sarcoma, neuroblastoma, CNS tumors, and cancer predisposition syndromes.

In this chapter we will give an overview of technical aspects of PET/MR imaging, review practical aspects related to performing pediatric PET/MR, and present a discussion of potential clinical as well as scientific applications.

Keywords

PET/MRI PET MRI Children Oncology Staging Therapy response 

References

  1. 1.
    Delso G, Furst S, Jakoby B, Ladebeck R, Ganter C, Nekolla SG, Schwaiger M, Ziegler SI. Performance measurements of the Siemens mMR integrated whole-body PET/MR scanner. J Nucl Med. 2011;52(12):1914–22.CrossRefGoogle Scholar
  2. 2.
    Schafer JF, Gatidis S, Schmidt H, Guckel B, Bezrukov I, Pfannenberg CA, Reimold M, Ebinger M, Fuchs J, Claussen CD, Schwenzer NF. Simultaneous whole-body PET/MR imaging in comparison to PET/CT in pediatric oncology: initial results. Radiology. 2014;273(1):220–31.CrossRefGoogle Scholar
  3. 3.
    Gatidis S, Schmidt H, Gucke B, Bezrukov I, Seitz G, Ebinger M, Reimold M, Pfannenberg CA, Nikolaou K, Schwenzer NF, Schafer JF. Comprehensive oncologic imaging in infants and preschool children with substantially reduced radiation exposure using combined simultaneous (18)F-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging: a direct comparison to (18)F-fluorodeoxyglucose positron emission tomography/computed tomography. Invest Radiol. 2016;51(1):7–14.Google Scholar
  4. 4.
    Pfluger T, Melzer HI, Mueller WP, Coppenrath E, Bartenstein P, Albert MH, Schmid I. Diagnostic value of combined (18)F-FDG PET/MRI for staging and restaging in paediatric oncology. Eur J Nucl Med Mol Imaging. 2012;39(11):1745–55.Google Scholar
  5. 5.
    Gatidis S, Bender B, Reimold M, Schafer JF. PET/MRI in children. Eur J Radiol. 2017;94:A64.CrossRefGoogle Scholar
  6. 6.
    Levin CS, Maramraju SH, Khalighi MM, Deller TW, Delso G, Jansen F. Design features and mutual compatibility studies of the time-of-flight PET capable GE SIGNA PET/MR system. IEEE Trans Med Imaging. 2016;35(8):1907–14.CrossRefGoogle Scholar
  7. 7.
    Bezrukov I, Schmidt H, Gatidis S, Mantlik F, Schafer JF, Schwenzer N, Pichler BJ. Quantitative evaluation of segmentation- and atlas-based attenuation correction for PET/MR on pediatric patients. J Nucl Med. 2015;56(7):1067–74.CrossRefGoogle Scholar
  8. 8.
    Hofmann M, Pichler B, Scholkopf B, Beyer T. Towards quantitative PET/MRI: a review of MR-based attenuation correction techniques. Eur J Nucl Med Mol Imaging. 2009;36(Suppl 1):S93–104.CrossRefGoogle Scholar
  9. 9.
    Brendle CB, Schmidt H, Fleischer S, Braeuning UH, Pfannenberg CA, Schwenzer NF. Simultaneously acquired MR/PET images compared with sequential MR/PET and PET/CT: alignment quality. Radiology. 2013;268(1):190–9.CrossRefGoogle Scholar
  10. 10.
    Wurslin C, Schmidt H, Martirosian P, Brendle C, Boss A, Schwenzer NF, Stegger L. Respiratory motion correction in oncologic PET using T1-weighted MR imaging on a simultaneous whole-body PET/MR system. J Nucl Med. 2013;54(3):464–71.CrossRefGoogle Scholar
  11. 11.
    Gatidis S, Schmidt H, la Fougere C, Nikolaou K, Schwenzer NF, Schafer JF. Defining optimal tracer activities in pediatric oncologic whole-body 18F-FDG-PET/MRI. Eur J Nucl Med Mol Imaging. 2016;43:2283.CrossRefGoogle Scholar
  12. 12.
    Aghighi M, Pisani LJ, Sun Z, Klenk C, Madnawat H, Fineman SL, Advani R, Von Eyben R, Owen D, Quon A, Moseley M, Daldrup-Link HE. Speeding up PET/MR for cancer staging of children and young adults. Eur Radiol. 2016;26(12):4239–48.CrossRefGoogle Scholar
  13. 13.
    Klenk C, Gawande R, Tran VT, Leung JT, Chi K, Owen D, Luna-Fineman S, Sakamoto KM, McMillan A, Quon A, Daldrup-Link HE. Progressing toward a cohesive pediatric 18F-FDG PET/MR protocol: is administration of gadolinium chelates necessary? J Nucl Med. 2016;57(1):70–7.CrossRefGoogle Scholar
  14. 14.
    Gatidis S, Guckel B, la Fougere C, Schmitt J, Schafer JF. Simultaneous whole-body PET-MRI in pediatric oncology: more than just reducing radiation? Radiologe. 2016;56(7):622–30.CrossRefGoogle Scholar
  15. 15.
    Asenbaum U, Nolz R, Karanikas G, Furtner J, Woitek R, Simonitsch-Klupp I, Raderer M, Mayerhoefer ME. Bone marrow involvement in malignant lymphoma: evaluation of quantitative PET and MRI biomarkers. Acad Radiol. 2017;25:453.CrossRefGoogle Scholar
  16. 16.
    Tzeng CW, Smith JK, Heslin MJ. Soft tissue sarcoma: preoperative and postoperative imaging for staging. Surg Oncol Clin N Am. 2007;16(2):389–402.CrossRefGoogle Scholar
  17. 17.
    Byun BH, Kong CB, Park J, Seo Y, Lim I, Choi CW, Cho WH, Jeon DG, Koh JS, Lee SY, Lim SM. Initial metabolic tumor volume measured by 18F-FDG PET/CT can predict the outcome of osteosarcoma of the extremities. J Nucl Med. 2013;54(10):1725–32.CrossRefGoogle Scholar
  18. 18.
    Rauscher I, Eiber M, Furst S, Souvatzoglou M, Nekolla SG, Ziegler SI, Rummeny EJ, Schwaiger M, Beer AJ. PET/MR imaging in the detection and characterization of pulmonary lesions: technical and diagnostic evaluation in comparison to PET/CT. J Nucl Med. 2014;55(5):724–9.CrossRefGoogle Scholar
  19. 19.
    Lee JW, Cho A, Yun M, Lee JD, Lyu CJ, Kang WJ. Prognostic value of pretreatment FDG PET in pediatric neuroblastoma. Eur J Radiol. 2015;84(12):2633–9.CrossRefGoogle Scholar
  20. 20.
    Goo HW. Whole-body MRI of neuroblastoma. Eur J Radiol. 2010;75(3):306–14.CrossRefGoogle Scholar
  21. 21.
    Dubois SG, et al. MIBG avidity correlates with clinical features, tumor biology, and outcomes in neuroblastoma: a report from the Children’s Oncology Group. Pediatr Blood Cancer. 2017;64(11)  https://doi.org/10.1002/pbc.26545.
  22. 22.
    Papathanasiou ND, Gaze MN, Sullivan K, Aldridge M, Waddington W, Almuhaideb A, Bomanji JB. 18F-FDG PET/CT and 123I-metaiodobenzylguanidine imaging in high-risk neuroblastoma: diagnostic comparison and survival analysis. J Nucl Med. 2011;52(4):519–25.CrossRefGoogle Scholar
  23. 23.
    Zhang H, Huang R, Cheung NK, Guo H, Zanzonico PB, Thaler HT, Lewis JS, Blasberg RG. Imaging the norepinephrine transporter in neuroblastoma: a comparison of [18F]-MFBG and 123I-MIBG. Clin Cancer Res. 2014;20(8):2182–91.CrossRefGoogle Scholar
  24. 24.
    Poeppel TD, Binse I, Petersenn S, Lahner H, Schott M, Antoch G, Brandau W, Bockisch A, Boy C. 68Ga-DOTATOC versus 68Ga-DOTATATE PET/CT in functional imaging of neuroendocrine tumors. J Nucl Med. 2011;52(12):1864–70.CrossRefGoogle Scholar
  25. 25.
    Sawicki LM, Deuschl C, Beiderwellen K, Ruhlmann V, Poeppel TD, Heusch P, Lahner H, Fuhrer D, Bockisch A, Herrmann K, Forsting M, Antoch G, Umutlu L. Evaluation of (68)Ga-DOTATOC PET/MRI for whole-body staging of neuroendocrine tumours in comparison with (68)Ga-DOTATOC PET/CT. Eur Radiol. 2017;27(10):4091–9.CrossRefGoogle Scholar
  26. 26.
    Warbey VS, Ferner RE, Dunn JT, Calonje E, O’Doherty MJ. [18F]FDG PET/CT in the diagnosis of malignant peripheral nerve sheath tumours in neurofibromatosis type-1. Eur J Nucl Med Mol Imaging. 2009;36(5):751–7.CrossRefGoogle Scholar
  27. 27.
    Tsai LL, Drubach L, Fahey F, Irons M, Voss S, Ullrich NJ. [18F]-Fluorodeoxyglucose positron emission tomography in children with neurofibromatosis type 1 and plexiform neurofibromas: correlation with malignant transformation. J Neurooncol. 2012;108(3):469-75.   https://doi.org/10.1007/s11060-012-0840-5.
  28. 28.
    Wasa J, Nishida Y, Tsukushi S, Shido Y, Sugiura H, Nakashima H, Ishiguro N. MRI features in the differentiation of malignant peripheral nerve sheath tumors and neurofibromas. AJR Am J Roentgenol. 2010;194(6):1568–74.CrossRefGoogle Scholar
  29. 29.
    Kratz CP, Achatz MI, Brugieres L, Frebourg T, Garber JE, Greer MLC, Hansford JR, Janeway KA, Kohlmann WK, Mcgee R, Mullighan CG, Onel K, Pajtler KW, Pfister SM, Savage SA, Schiffman JD, Schneider KA, Strong LC, Evans DGR, Wasserman JD, Villani A, Malkin D. Cancer screening recommendations for individuals with Li-Fraumeni syndrome. Clin Cancer Res. 2017;23(11):E38–45.CrossRefGoogle Scholar
  30. 30.
    Bisdas S, Ritz R, Bender B, Braun C, Pfannenberg C, Reimold M, Naegele T, Ernemann U. Metabolic mapping of gliomas using hybrid MR-PET imaging: feasibility of the method and spatial distribution of metabolic changes. Invest Radiol. 2013;48(5):295–301.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Pediatric Imaging, Department of RadiologyUniversity Hospital TübingenTübingenGermany

Personalised recommendations