Advertisement

PET/CT in Pediatric Oncology

  • Lisa J. States
  • Stephan D. VossEmail author
Chapter
Part of the Pediatric Oncology book series (PEDIATRICO)

Abstract

In pediatric practice, 18F-FDG PET/CT is now considered standard of care for the diagnosis, staging, and posttreatment response assessment for an increasing number of pediatric malignancies. The relative rarity of pediatric tumors, availability of PET/CT scanners, and development of pediatric-specific protocols have contributed to the slower standardization of PET/CT practices in the pediatric population as compared to adults. Other pediatric-specific challenges, including radiation concerns, use of IV contrast, and requirements for anesthesia, must also be addressed. This chapter will focus on the use of 18F-FDG PET/CT, protocol options, and normal variations in the pediatric patients, in addition to reviewing the evidence-based literature for specific pediatric cancer types and tumor-like non-cancerous lesions. Recent advances in hybrid PET technology are also presented, with an emphasis on the role these technologies play in driving development of molecular imaging techniques and their application to personalized and targeted approaches to pediatric cancer care.

Keywords

PET/CT Total-body PET/CT FDG FDG-PET Response assessment PET tracer PET/MRI SUV PERCIST RECIST iRECIST 

References

  1. 1.
    Colleran GC, Kwatra N, Oberg L, Grant FD, Drubach L, Callahan MJ, MacDougall RD, Fahey FH, Voss SD. How we read pediatric PET/CT: indications and strategies for image acquisition, interpretation and reporting. Cancer Imaging. 2017;17(1):28.  https://doi.org/10.1186/s40644-017-0130-8.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Kiratli PO, Tuncel M, Bar-Sever Z. Nuclear medicine in pediatric and adolescent tumors. Semin Nucl Med. 2016;46(4):308–23.  https://doi.org/10.1053/j.semnuclmed.2016.01.004.CrossRefPubMedGoogle Scholar
  3. 3.
    Franzius C. FDG-PET/CT in pediatric solid tumors. Q J Nucl Med Mol Imaging. 2010;54(4):401–10.PubMedGoogle Scholar
  4. 4.
    Uslu L, Donig J, Link M, Rosenberg J, Quon A, Daldrup-Link HE. Value of 18F-FDG PET and PET/CT for evaluation of pediatric malignancies. J Nucl Med. 2015;56(2):274–86.  https://doi.org/10.2967/jnumed.114.146290.CrossRefPubMedGoogle Scholar
  5. 5.
    Parisi MT, Bermo MS, Alessio AM, Sharp SE, Gelfand MJ, Shulkin BL. Optimization of pediatric PET/CT. Semin Nucl Med. 2017;47(3):258–74.  https://doi.org/10.1053/j.semnuclmed.2017.01.002.CrossRefPubMedGoogle Scholar
  6. 6.
    Vandenberghe S, Mikhaylova E, D’Hoe E, Mollet P, Karp JS. Recent developments in time-of-flight PET. EJNMMI Phys. 2016;3(1):3.  https://doi.org/10.1186/s40658-016-0138-3.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Rausch I, Cal-Gonzalez J, Dapra D, Gallowitsch HJ, Lind P, Beyer T, Minear G. Performance evaluation of the biograph mCT Flow PET/CT system according to the NEMA NU2-2012 standard. EJNMMI Phys. 2015;2(1):26.  https://doi.org/10.1186/s40658-015-0132-1.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Cherry SR, Jones T, Karp JS, Qi J, Moses WW, Badawi RD. Total-body PET: maximizing sensitivity to create new opportunities for clinical research and patient care. J Nucl Med. 2018;59:3–12.CrossRefGoogle Scholar
  9. 9.
    Cherry SR, Badawi RD, Karp JS, Moses WW, Price P, Jones T. Total-body imaging: transforming the role of positron emission tomography. Sci Transl Med. 2017;9(381)  https://doi.org/10.1126/scitranslmed.aaf6169.
  10. 10.
    Furth C, Denecke T, Steffen I, Ruf J, Voelker T, Misch D, Vondran F, Plotkin M, Stover B, Henze G, Lemke AJ, Amthauer H. Correlative imaging strategies implementing CT, MRI, and PET for staging of childhood Hodgkin disease. J Pediatr Hematol Oncol. 2006;28(8):501–12.  https://doi.org/10.1097/01.mph.0000212962.68007.12.CrossRefPubMedGoogle Scholar
  11. 11.
    Yamamoto Y, Ono Y, Aga F, Kawai N, Kudomi N, Nishiyama Y. Correlation of 18F-FLT uptake with tumor grade and Ki-67 immunohistochemistry in patients with newly diagnosed and recurrent gliomas. J Nucl Med. 2012;53(12):1911–5.  https://doi.org/10.2967/jnumed.112.104729.CrossRefPubMedGoogle Scholar
  12. 12.
    Timmers HJ, Chen CC, Carrasquillo JA, Whatley M, Ling A, Havekes B, Eisenhofer G, Martiniova L, Adams KT, Pacak K. Comparison of 18F-fluoro-L-DOPA, 18F-fluoro-deoxyglucose, and 18F-fluorodopamine PET and 123I-MIBG scintigraphy in the localization of pheochromocytoma and paraganglioma. J Clin Endocrinol Metab. 2009;94(12):4757–67.  https://doi.org/10.1210/jc.2009-1248.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Kaste SC, Snyder SE, Metzger ML, Sandlund JT, Howard SC, Krasin M, Shulkin BL. Comparison of (11)C-methionine and (18)F-FDG PET/CT for staging and follow-up of pediatric lymphoma. J Nucl Med. 2017;58(3):419–24.  https://doi.org/10.2967/jnumed.116.178640.CrossRefPubMedGoogle Scholar
  14. 14.
    Lucas JT Jr, Serrano N, Kim H, Li X, Snyder SE, Hwang S, Li Y, Hua CH, Broniscer A, Merchant TE, Shulkin BL. (11)C-methionine positron emission tomography delineates non-contrast enhancing tumor regions at high risk for recurrence in pediatric high-grade glioma. J Neurooncol. 2017;132(1):163–70.  https://doi.org/10.1007/s11060-016-2354-z.CrossRefPubMedGoogle Scholar
  15. 15.
    Kong G, Hofman MS, Murray WK, Wilson S, Wood P, Downie P, Super L, Hogg A, Eu P, Hicks RJ. Initial experience with gallium-68 DOTA-octreotate PET/CT and peptide receptor radionuclide therapy for pediatric patients with refractory metastatic neuroblastoma. J Pediatr Hematol Oncol. 2016;38(2):87–96.  https://doi.org/10.1097/MPH.0000000000000411.CrossRefPubMedGoogle Scholar
  16. 16.
    Paterson BM, Roselt P, Denoyer D, Cullinane C, Binns D, Noonan W, Jeffery CM, Price RI, White JM, Hicks RJ, Donnelly PS. PET imaging of tumours with a 64Cu labeled macrobicyclic cage amine ligand tethered to Tyr3-octreotate. Dalton Trans. 2014;43(3):1386–96.  https://doi.org/10.1039/c3dt52647j.CrossRefPubMedGoogle Scholar
  17. 17.
    Pandit-Taskar N, Zanzonico P, Staton KD, Carrasquillo JA, Reidy-Lagunes D, Lyashchenko S, Burnazi E, Zhang H, Lewis JS, Blasberg R, Larson SM, Weber WA, Modak S. Biodistribution and dosimetry of (18)F-meta-fluorobenzylguanidine: a first-in-human PET/CT imaging study of patients with neuroendocrine malignancies. J Nucl Med. 2018;59(1):147–53.  https://doi.org/10.2967/jnumed.117.193169.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Sai KKS, Zachar Z, Bingham PM, Mintz A. Metabolic PET imaging in oncology. AJR Am J Roentgenol. 2017;209(2):270–6.  https://doi.org/10.2214/AJR.17.18112.CrossRefPubMedGoogle Scholar
  19. 19.
    Koppenol WH, Bounds PL, Dang CV. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer. 2011;11(5):325–37.  https://doi.org/10.1038/nrc3038.CrossRefPubMedGoogle Scholar
  20. 20.
    Samuel AM. PET/CT in pediatric oncology. Indian J Cancer. 2010;47(4):360–70.  https://doi.org/10.4103/0019-509X.73551.CrossRefPubMedGoogle Scholar
  21. 21.
    Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M, Rubinstein L, Shankar L, Dodd L, Kaplan R, Lacombe D, Verweij J. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45(2):228–47.  https://doi.org/10.1016/j.ejca.2008.10.026.CrossRefPubMedGoogle Scholar
  22. 22.
    Litiere S, Collette S, de Vries EG, Seymour L, Bogaerts J. RECIST - learning from the past to build the future. Nat Rev Clin Oncol. 2017;14(3):187–92.  https://doi.org/10.1038/nrclinonc.2016.195.CrossRefPubMedGoogle Scholar
  23. 23.
    Schwartz LH, Seymour L, Litiere S, Ford R, Gwyther S, Mandrekar S, Shankar L, Bogaerts J, Chen A, Dancey J, Hayes W, Hodi FS, Hoekstra OS, Huang EP, Lin N, Liu Y, Therasse P, Wolchok JD, de Vries E. RECIST 1.1 - standardisation and disease-specific adaptations: perspectives from the RECIST Working Group. Eur J Cancer. 2016;62:138–45.  https://doi.org/10.1016/j.ejca.2016.03.082.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Tirkes T, Hollar MA, Tann M, Kohli MD, Akisik F, Sandrasegaran K. Response criteria in oncologic imaging: review of traditional and new criteria. Radiographics. 2013;33(5):1323–41.  https://doi.org/10.1148/rg.335125214.CrossRefPubMedGoogle Scholar
  25. 25.
    JH O, Lodge MA, Wahl RL. Practical PERCIST: a simplified guide to PET response criteria in solid tumors 1.0. Radiology. 2016;280(2):576–84.  https://doi.org/10.1148/radiol.2016142043.CrossRefGoogle Scholar
  26. 26.
    Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50(Suppl 1):122S–50S.  https://doi.org/10.2967/jnumed.108.057307.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Flerlage JE, Kelly KM, Beishuizen A, Cho S, De Alarcon PA, Dieckmann U, Drachtman RA, Hoppe BS, Howard SC, Kaste SC, Kluge R, Kurch L, Landman-Parker J, Lewis J, Link MP, McCarten K, Punnett A, Stoevesandt D, Voss SD, Wallace WH, Mauz-Korholz C, Metzger ML. Staging evaluation and response criteria harmonization (SEARCH) for childhood, adolescent and young adult hodgkin lymphoma (CAYAHL): methodology statement. Pediatr Blood Cancer. 2017;64(7)  https://doi.org/10.1002/pbc.26421.
  28. 28.
    Kluge R, Kurch L, Georgi T, Metzger M. Current role of FDG-PET in pediatric Hodgkin’s lymphoma. Semin Nucl Med. 2017;47(3):242–57.  https://doi.org/10.1053/j.semnuclmed.2017.01.001.CrossRefPubMedGoogle Scholar
  29. 29.
    Rosolen A, Perkins SL, Pinkerton CR, Guillerman RP, Sandlund JT, Patte C, Reiter A, Cairo MS. Revised international pediatric non-hodgkin lymphoma staging system. J Clin Oncol. 2015;33(18):2112–8.  https://doi.org/10.1200/JCO.2014.59.7203.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Sandlund JT, Guillerman RP, Perkins SL, Pinkerton CR, Rosolen A, Patte C, Reiter A, Cairo MS. International pediatric non-hodgkin lymphoma response criteria. J Clin Oncol. 2015;33(18):2106–11.  https://doi.org/10.1200/JCO.2014.59.0745.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Barrington SF, Mikhaeel NG, Kostakoglu L, Meignan M, Hutchings M, Mueller SP, Schwartz LH, Zucca E, Fisher RI, Trotman J, Hoekstra OS, Hicks RJ, O’Doherty MJ, Hustinx R, Biggi A, Cheson BD. Role of imaging in the staging and response assessment of lymphoma: consensus of the International Conference on Malignant Lymphomas Imaging Working Group. J Clin Oncol. 2014;32(27):3048–58.  https://doi.org/10.1200/JCO.2013.53.5229.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Cheson BD, Fisher RI, Barrington SF, Cavalli F, Schwartz LH, Zucca E, Lister TA, Alliance AL, Lymphoma G, Eastern Cooperative Oncology G, European Mantle Cell Lymphoma C, Italian Lymphoma F, European Organisation for R, Treatment of Cancer/Dutch Hemato-Oncology G, Grupo Espanol de Medula O, German High-Grade Lymphoma Study G, German Hodgkin’s Study G, Japanese Lymphorra Study G, Lymphoma Study A, Group NCT, Nordic Lymphoma Study G, Southwest Oncology G, United Kingdom National Cancer Research I. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol. 2014;32(27):3059–68.  https://doi.org/10.1200/JCO.2013.54.8800.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Seymour L, Bogaerts J, Perrone A, Ford R, Schwartz LH, Mandrekar S, Lin NU, Litiere S, Dancey J, Chen A, Hodi FS, Therasse P, Hoekstra OS, Shankar LK, Wolchok JD, Ballinger M, Caramella C, de Vries EG, group Rw. iRECIST: guidelines for response criteria for use in trials testing immunotherapeutics. Lancet Oncol. 2017;18(3):e143–52.  https://doi.org/10.1016/S1470-2045(17)30074-8.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Eleneen Y, Colen RR. Cancer imaging in immunotherapy. Adv Exp Med Biol. 2017;995:141–53.  https://doi.org/10.1007/978-3-319-53156-4_7.CrossRefPubMedGoogle Scholar
  35. 35.
    Subhawong TK, Winn A, Shemesh SS, Pretell-Mazzini J. F-18 FDG PET differentiation of benign from malignant chondroid neoplasms: a systematic review of the literature. Skeletal Radiol. 2017;46(9):1233–9.  https://doi.org/10.1007/s00256-017-2685-7.CrossRefPubMedGoogle Scholar
  36. 36.
    Tsai LL, Drubach L, Fahey F, Irons M, Voss S, Ullrich NJ. [18F]-fluorodeoxyglucose positron emission tomography in children with neurofibromatosis type 1 and plexiform neurofibromas: correlation with malignant transformation. J Neurooncol. 2012;108(3):469–75.  https://doi.org/10.1007/s11060-012-0840-5.CrossRefPubMedGoogle Scholar
  37. 37.
    Chirindel A, Chaudhry M, Blakeley JO, Wahl R. 18F-FDG PET/CT qualitative and quantitative evaluation in neurofibromatosis type 1 patients for detection of malignant transformation: comparison of early to delayed imaging with and without liver activity normalization. J Nucl Med. 2015;56(3):379–85.  https://doi.org/10.2967/jnumed.114.142372.CrossRefPubMedGoogle Scholar
  38. 38.
    Lisle JW, Eary JF, O’Sullivan J, Conrad EU. Risk assessment based on FDG-PET imaging in patients with synovial sarcoma. Clin Orthop Relat Res. 2009;467(6):1605–11.  https://doi.org/10.1007/s11999-008-0647-z.CrossRefPubMedGoogle Scholar
  39. 39.
    Lodge MA. Repeatability of SUV in oncologic 18F-FDG PET. J Nucl Med. 2017;58(4):523–32.  https://doi.org/10.2967/jnumed.116.186353.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Costantini DL, Vali R, Chan J, McQuattie S, Charron M. Dual-time-point FDG PET/CT for the evaluation of pediatric tumors. AJR Am J Roentgenol. 2013;200(2):408–13.  https://doi.org/10.2214/AJR.12.8930.CrossRefPubMedGoogle Scholar
  41. 41.
    Boellaard R, Delgado-Bolton R, Oyen WJ, Giammarile F, Tatsch K, Eschner W, Verzijlbergen FJ, Barrington SF, Pike LC, Weber WA, Stroobants S, Delbeke D, Donohoe KJ, Holbrook S, Graham MM, Testanera G, Hoekstra OS, Zijlstra J, Visser E, Hoekstra CJ, Pruim J, Willemsen A, Arends B, Kotzerke J, Bockisch A, Beyer T, Chiti A, Krause BJ, European Association of Nuclear M. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42(2):328–54.  https://doi.org/10.1007/s00259-014-2961-x.CrossRefPubMedGoogle Scholar
  42. 42.
    Zanotti-Fregonara P, Laforest R, Wallis JW. Fetal radiation dose from 18F-FDG in pregnant patients imaged with PET, PET/CT, and PET/MR. J Nucl Med. 2015;56(8):1218–22.  https://doi.org/10.2967/jnumed.115.157032.CrossRefPubMedGoogle Scholar
  43. 43.
    Takalkar AM, Khandelwal A, Lokitz S, Lilien DL, Stabin MG. 18F-FDG PET in pregnancy and fetal radiation dose estimates. J Nucl Med. 2011;52(7):1035–40.  https://doi.org/10.2967/jnumed.110.085381.CrossRefPubMedGoogle Scholar
  44. 44.
    Grant FD. Normal variations and benign findings in pediatric 18F-FDG-PET/CT. PET Clin. 2014;9(2):195–208.  https://doi.org/10.1016/j.cpet.2013.12.002.CrossRefPubMedGoogle Scholar
  45. 45.
    Hong TS, Shammas A, Charron M, Zukotynski KA, Drubach LA, Lim R. Brown adipose tissue 18F-FDG uptake in pediatric PET/CT imaging. Pediatr Radiol. 2011;41(6):759–68.  https://doi.org/10.1007/s00247-010-1925-y.CrossRefPubMedGoogle Scholar
  46. 46.
    Zukotynski KA, Fahey FH, Laffin S, Davis R, Treves ST, Grant FD, Drubach LA. Seasonal variation in the effect of constant ambient temperature of 24 degrees C in reducing FDG uptake by brown adipose tissue in children. Eur J Nucl Med Mol Imaging. 2010;37(10):1854–60.  https://doi.org/10.1007/s00259-010-1485-2.CrossRefPubMedGoogle Scholar
  47. 47.
    Gelfand MJ, O’Hara SM, Curtwright LA, Maclean JR. Pre-medication to block [(18)F]FDG uptake in the brown adipose tissue of pediatric and adolescent patients. Pediatr Radiol. 2005;35(10):984–90.  https://doi.org/10.1007/s00247-005-1505-8.CrossRefPubMedGoogle Scholar
  48. 48.
    Lassmann M, Treves ST, Group ESPDHW. Paediatric radiopharmaceutical administration: harmonization of the 2007 EANM paediatric dosage card (version 1.5.2008) and the 2010 North American consensus guidelines. Eur J Nucl Med Mol Imaging. 2014;41(5):1036–41.  https://doi.org/10.1007/s00259-014-2731-9.CrossRefPubMedGoogle Scholar
  49. 49.
    Fahey FH, Goodkind A, MacDougall RD, Oberg L, Ziniel SI, Cappock R, Callahan MJ, Kwatra N, Treves ST, Voss SD. Operational and dosimetric aspects of pediatric PET/CT. J Nucl Med. 2017;58:1360.  https://doi.org/10.2967/jnumed.116.182899.CrossRefPubMedGoogle Scholar
  50. 50.
    Fahey FH. Dosimetry of pediatric PET/CT. J Nucl Med. 2009;50(9):1483–91.  https://doi.org/10.2967/jnumed.108.054130.CrossRefPubMedGoogle Scholar
  51. 51.
    Alessio AM, Kinahan PE, Manchanda V, Ghioni V, Aldape L, Parisi MT. Weight-based, low-dose pediatric whole-body PET/CT protocols. J Nucl Med. 2009;50(10):1570–7.  https://doi.org/10.2967/jnumed.109.065912.CrossRefPubMedGoogle Scholar
  52. 52.
    Shammas A, Lim R, Charron M. Pediatric FDG PET/CT: physiologic uptake, normal variants, and benign conditions. Radiographics. 2009;29(5):1467–86.  https://doi.org/10.1148/rg.295085247.CrossRefPubMedGoogle Scholar
  53. 53.
    Salaun PY, Gastinne T, Bodet-Milin C, Campion L, Cambefort P, Moreau A, Le Gouill S, Berthou C, Moreau P, Kraeber-Bodere F. Analysis of 18F-FDG PET diffuse bone marrow uptake and splenic uptake in staging of Hodgkin’s lymphoma: a reflection of disease infiltration or just inflammation? Eur J Nucl Med Mol Imaging. 2009;36(11):1813–21.  https://doi.org/10.1007/s00259-009-1183-0.CrossRefPubMedGoogle Scholar
  54. 54.
    Surasi DS, Bhambhvani P, Baldwin JA, Almodovar SE, O’Malley JP. (1)(8)F-FDG PET and PET/CT patient preparation: a review of the literature. J Nucl Med Technol. 2014;42(1):5–13.  https://doi.org/10.2967/jnmt.113.132621.CrossRefPubMedGoogle Scholar
  55. 55.
    Sharp SE, Gelfand MJ, Absalon MJ. Altered FDG uptake patterns in pediatric lymphoblastic lymphoma patients receiving induction chemotherapy that includes very high dose corticosteroids. Pediatr Radiol. 2012;42(3):331–6.  https://doi.org/10.1007/s00247-011-2228-7.CrossRefPubMedGoogle Scholar
  56. 56.
    Cohen M, Hill CA, Cangir A, Sullivan MP. Thymic rebound after treatment of childhood tumors. AJR Am J Roentgenol. 1980;135(1):151–6.  https://doi.org/10.2214/ajr.135.1.151.CrossRefPubMedGoogle Scholar
  57. 57.
    Jerushalmi J, Frenkel A, Bar-Shalom R, Khoury J, Israel O. Physiologic thymic uptake of 18F-FDG in children and young adults: a PET/CT evaluation of incidence, patterns, and relationship to treatment. J Nucl Med. 2009;50(6):849–53.  https://doi.org/10.2967/jnumed.108.058586.CrossRefPubMedGoogle Scholar
  58. 58.
    Kleis M, Daldrup-Link H, Matthay K, Goldsby R, Lu Y, Schuster T, Schreck C, Chu PW, Hawkins RA, Franc BL. Diagnostic value of PET/CT for the staging and restaging of pediatric tumors. Eur J Nucl Med Mol Imaging. 2009;36(1):23–36.  https://doi.org/10.1007/s00259-008-0911-1.CrossRefPubMedGoogle Scholar
  59. 59.
    Portwine C, Marriott C, Barr RD. PET imaging for pediatric oncology: an assessment of the evidence. Pediatr Blood Cancer. 2010;55(6):1048–61.  https://doi.org/10.1002/pbc.22747.CrossRefPubMedGoogle Scholar
  60. 60.
    Adams HJ, Nievelstein RA, Kwee TC. Opportunities and limitations of bone marrow biopsy and bone marrow FDG-PET in lymphoma. Blood Rev. 2015;29(6):417–25.  https://doi.org/10.1016/j.blre.2015.06.003. Epub 2015 Jun 17
  61. 61.
    Cheng G, Alavi A. Value of 18F-FDG PET versus iliac biopsy in the initial evaluation of bone marrow infiltration in the case of Hodgkin’s disease: a meta-analysis. 2013. Nucl Med Commun. 34(1):25–31.  https://doi.org/10.1097/MNM.0b013e32835afc19.
  62. 62.
    Sammer MB, Shulkin BL, Alessio A, Parisi MT. Role of limited whole-body PET/CT in pediatric lymphoma. AJR Am J Roentgenol. 2011;196(5):1047–55.  https://doi.org/10.2214/AJR.10.6074.CrossRefPubMedGoogle Scholar
  63. 63.
    Sultan I, Qaddoumi I, Yaser S, Rodriguez-Galindo C, Ferrari A. Comparing adult and pediatric rhabdomyosarcoma in the surveillance, epidemiology and end results program, 1973 to 2005: an analysis of 2,600 patients. J Clin Oncol. 2009;27(20):3391–7.  https://doi.org/10.1200/JCO.2008.19.7483.CrossRefPubMedGoogle Scholar
  64. 64.
    Borinstein SC, Steppan D, Hayashi M, Loeb DM, Isakoff MS, Binitie O, Brohl AS, Bridge JA, Stavas M, Shinohara ET, Meyer WH, Reed DR, Wagner LM. Consensus and controversies regarding the treatment of rhabdomyosarcoma. Pediatr Blood Cancer. 2018;65(2)  https://doi.org/10.1002/pbc.26809.
  65. 65.
    Federico SM, Spunt SL, Krasin MJ, Billup CA, Wu J, Shulkin B, Mandell G, McCarville MB. Comparison of PET-CT and conventional imaging in staging pediatric rhabdomyosarcoma. Pediatr Blood Cancer. 2013;60(7):1128–34.  https://doi.org/10.1002/pbc.24430.CrossRefPubMedGoogle Scholar
  66. 66.
    Alcorn KM, Deans KJ, Congeni A, Sulkowski JP, Bagatell R, Mattei P, Minneci PC. Sentinel lymph node biopsy in pediatric soft tissue sarcoma patients: utility and concordance with imaging. J Pediatr Surg. 2013;48(9):1903–6.  https://doi.org/10.1016/j.jpedsurg.2013.04.013.CrossRefPubMedGoogle Scholar
  67. 67.
    De Corti F, Dall’Igna P, Bisogno G, Casara D, Rossi CR, Foletto M, Alaggio R, Carli M, Cecchetto G. Sentinel node biopsy in pediatric soft tissue sarcomas of extremities. Pediatr Blood Cancer. 2009;52(1):51–4.  https://doi.org/10.1002/pbc.21777.CrossRefPubMedGoogle Scholar
  68. 68.
    Walter F, Federman N, Apichairuk W, Nelson S, Phelps ME, Allen-Auerbach M, Walter MA, Czernin J. 18F-fluorodeoxyglucose uptake of bone and soft tissue sarcomas in pediatric patients. Pediatr Hematol Oncol. 2011;28(7):579–87.  https://doi.org/10.3109/08880018.2011.602180.CrossRefPubMedGoogle Scholar
  69. 69.
    Cheuk DK, Sabin ND, Hossain M, Wozniak A, Naik M, Rodriguez-Galindo C, Krasin MJ, Shulkin BL. PET/CT for staging and follow-up of pediatric nasopharyngeal carcinoma. Eur J Nucl Med Mol Imaging. 2012;39(7):1097–106.  https://doi.org/10.1007/s00259-012-2091-2.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Taran SJ, Taran R, Malipatil NB. Pediatric osteosarcoma: an updated review. Indian J Med Paediatr Oncol. 2017;38(1):33–43.  https://doi.org/10.4103/0971-5851.203513.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Janeway KA, Barkauskas DA, Krailo MD, Meyers PA, Schwartz CL, Ebb DH, Seibel NL, Grier HE, Gorlick R, Marina N. Outcome for adolescent and young adult patients with osteosarcoma: a report from the Children’s Oncology Group. Cancer. 2012;118(18):4597–605.  https://doi.org/10.1002/cncr.27414.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Davis JC, Daw NC, Navid F, Billups CA, Wu J, Bahrami A, Jenkins JJ, Snyder SE, Reddick WE, Santana VM, McCarville MB, Guo J, Shulkin BL. (18)F-FDG uptake during early adjuvant chemotherapy predicts histologic response in pediatric and young adult patients with osteosarcoma. J Nucl Med. 2018;59(1):25–30.  https://doi.org/10.2967/jnumed.117.190595.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Harrison DJ, Parisi MT, Shulkin BL. The role of (18)F-FDG-PET/CT in pediatric sarcoma. Semin Nucl Med. 2017;47(3):229–41.  https://doi.org/10.1053/j.semnuclmed.2016.12.004.CrossRefPubMedGoogle Scholar
  74. 74.
    Hurley C, McCarville MB, Shulkin BL, Mao S, Wu J, Navid F, Daw NC, Pappo AS, Bishop MW. Comparison of (18) F-FDG-PET-CT and bone scintigraphy for evaluation of osseous metastases in newly diagnosed and recurrent osteosarcoma. Pediatr Blood Cancer. 2016;63(8):1381–6.  https://doi.org/10.1002/pbc.26014.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Quartuccio N, Fox J, Kuk D, Wexler LH, Baldari S, Cistaro A, Schoder H. Pediatric bone sarcoma: diagnostic performance of (1)(8)F-FDG PET/CT versus conventional imaging for initial staging and follow-up. AJR Am J Roentgenol. 2015;204(1):153–60.  https://doi.org/10.2214/AJR.14.12932.CrossRefPubMedGoogle Scholar
  76. 76.
    Anderson ME. Update on survival in osteosarcoma. Orthop Clin North Am. 2016;47(1):283–92.  https://doi.org/10.1016/j.ocl.2015.08.022.CrossRefPubMedGoogle Scholar
  77. 77.
    Sharp SE, Shulkin BL, Gelfand MJ, McCarville MB. FDG PET/CT appearance of local osteosarcoma recurrences in pediatric patients. Pediatr Radiol. 2017;47(13):1800–8.  https://doi.org/10.1007/s00247-017-3963-1.CrossRefPubMedGoogle Scholar
  78. 78.
    Jackson TM, Bittman M, Granowetter L. Pediatric malignant bone tumors: a review and update on current challenges, and emerging drug targets. Curr Probl Pediatr Adolesc Health Care. 2016;46(7):213–28.  https://doi.org/10.1016/j.cppeds.2016.04.002.CrossRefPubMedGoogle Scholar
  79. 79.
    Rodriguez-Galindo C, Liu T, Krasin MJ, Wu J, Billups CA, Daw NC, Spunt SL, Rao BN, Santana VM, Navid F. Analysis of prognostic factors in ewing sarcoma family of tumors: review of St. Jude Children’s Research Hospital studies. Cancer. 2007;110(2):375–84.  https://doi.org/10.1002/cncr.22821.CrossRefPubMedGoogle Scholar
  80. 80.
    Franzius C, Sciuk J, Daldrup-Link HE, Jurgens H, Schober O. FDG-PET for detection of osseous metastases from malignant primary bone tumours: comparison with bone scintigraphy. Eur J Nucl Med. 2000;27(9):1305–11.CrossRefGoogle Scholar
  81. 81.
    Newman EN, Jones RL, Hawkins DS. An evaluation of [F-18]-fluorodeoxy-D-glucose positron emission tomography, bone scan, and bone marrow aspiration/biopsy as staging investigations in Ewing sarcoma. Pediatr Blood Cancer. 2013;60(7):1113–7.  https://doi.org/10.1002/pbc.24406.CrossRefPubMedGoogle Scholar
  82. 82.
    Hawkins DS, Schuetze SM, Butrynski JE, Rajendran JG, Vernon CB, Conrad EU III, Eary JF. [18F]Fluorodeoxyglucose positron emission tomography predicts outcome for Ewing sarcoma family of tumors. J Clin Oncol. 2005;23(34):8828–34.  https://doi.org/10.1200/JCO.2005.01.7079.CrossRefPubMedGoogle Scholar
  83. 83.
    Raciborska A, Bilska K, Drabko K, Michalak E, Chaber R, Pogorzala M, Polczynska K, Sobol G, Wieczorek M, Muszynska-Roslan K, Rychlowska-Pruszynska M, Rodriguez-Galindo C, Dziuk M. Response to chemotherapy estimates by FDG PET is an important prognostic factor in patients with Ewing sarcoma. Clin Transl Oncol. 2016;18(2):189–95.  https://doi.org/10.1007/s12094-015-1351-6.CrossRefPubMedGoogle Scholar
  84. 84.
    Palmerini E, Colangeli M, Nanni C, Fanti S, Marchesi E, Paioli A, Picci P, Cambioli S, Donati D, Cevolani L, De Paolis M, Gambarotti M, Ferrari S. The role of FDG PET/CT in patients treated with neoadjuvant chemotherapy for localized bone sarcomas. Eur J Nucl Med Mol Imaging. 2017;44(2):215–23.  https://doi.org/10.1007/s00259-016-3509-z.CrossRefPubMedGoogle Scholar
  85. 85.
    Meany H, Dombi E, Reynolds J, Whatley M, Kurwa A, Tsokos M, Salzer W, Gillespie A, Baldwin A, Derdak J, Widemann B. 18-fluorodeoxyglucose-positron emission tomography (FDG-PET) evaluation of nodular lesions in patients with Neurofibromatosis type 1 and plexiform neurofibromas (PN) or malignant peripheral nerve sheath tumors (MPNST). Pediatr Blood Cancer. 2013;60(1):59–64.  https://doi.org/10.1002/pbc.24212.CrossRefPubMedGoogle Scholar
  86. 86.
    Tovmassian D, Abdul Razak M, London K. The role of [(18)F]FDG-PET/CT in predicting malignant transformation of plexiform neurofibromas in neurofibromatosis-1. Int J Surg Oncol. 2016;2016:6162182.  https://doi.org/10.1155/2016/6162182.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Cistaro A, Treglia G, Pagano M, Fania P, Bova V, Basso ME, Fagioli F, Ficola U, Quartuccio N. A comparison between (1)(8)F-FDG PET/CT imaging and biological and radiological findings in restaging of hepatoblastoma patients. Biomed Res Int. 2013;2013:709037.  https://doi.org/10.1155/2013/709037.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Sharp SE, Parisi MT, Gelfand MJ, Yanik GA, Shulkin BL. Functional-metabolic imaging of neuroblastoma. Q J Nucl Med Mol Imaging. 2013;57(1):6–20.PubMedGoogle Scholar
  89. 89.
    Sharp SE, Shulkin BL, Gelfand MJ, Salisbury S, Furman WL. 123I-MIBG scintigraphy and 18F-FDG PET in neuroblastoma. J Nucl Med. 2009;50(8):1237–43.  https://doi.org/10.2967/jnumed.108.060467.CrossRefPubMedGoogle Scholar
  90. 90.
    DuBois SG, Mody R, Naranjo A, Van Ryn C, Russ D, Oldridge D, Kreissman S, Baker DL, Parisi M, Shulkin BL, Bai H, Diskin SJ, Batra V, Maris JM, Park JR, Matthay KK, Yanik G. MIBG avidity correlates with clinical features, tumor biology, and outcomes in neuroblastoma: a report from the Children’s Oncology Group. Pediatr Blood Cancer. 2017;64(11)  https://doi.org/10.1002/pbc.26545.
  91. 91.
    Melzer HI, Coppenrath E, Schmid I, Albert MH, von Schweinitz D, Tudball C, Bartenstein P, Pfluger T. (1)(2)(3)I-MIBG scintigraphy/SPECT versus (1)(8)F-FDG PET in paediatric neuroblastoma. Eur J Nucl Med Mol Imaging. 2011;38(9):1648–58.  https://doi.org/10.1007/s00259-011-1843-8.CrossRefPubMedGoogle Scholar
  92. 92.
    Moinul Hossain AK, Shulkin BL, Gelfand MJ, Bashir H, Daw NC, Sharp SE, Nadel HR, Dome JS. FDG positron emission tomography/computed tomography studies of Wilms’ tumor. Eur J Nucl Med Mol Imaging. 2010;37(7):1300–8.  https://doi.org/10.1007/s00259-010-1396-2.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Mueller WP, Melzer HI, Schmid I, Coppenrath E, Bartenstein P, Pfluger T. The diagnostic value of 18F-FDG PET and MRI in paediatric histiocytosis. Eur J Nucl Med Mol Imaging. 2013;40(3):356–63.  https://doi.org/10.1007/s00259-012-2278-6.CrossRefPubMedGoogle Scholar
  94. 94.
    Phillips M, Allen C, Gerson P, McClain K. Comparison of FDG-PET scans to conventional radiography and bone scans in management of Langerhans cell histiocytosis. Pediatr Blood Cancer. 2009;52(1):97–101.  https://doi.org/10.1002/pbc.21782.CrossRefPubMedGoogle Scholar
  95. 95.
    Sher AC, Orth R, McClain K, Allen C, Hayatghaibi S, Seghers V. PET/MR in the assessment of pediatric histiocytoses: a comparison to PET/CT. Clin Nucl Med. 2017;42(8):582–8.  https://doi.org/10.1097/RLU.0000000000001717.CrossRefPubMedGoogle Scholar
  96. 96.
    Zukotynski K, Fahey F, Kocak M, Kun L, Boyett J, Fouladi M, Vajapeyam S, Treves T, Poussaint TY. 18F-FDG PET and MR imaging associations across a spectrum of pediatric brain tumors: a report from the pediatric brain tumor consortium. J Nucl Med. 2014;55(9):1473–80.  https://doi.org/10.2967/jnumed.114.139626.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Patil S, Biassoni L, Borgwardt L. Nuclear medicine in pediatric neurology and neurosurgery: epilepsy and brain tumors. Semin Nucl Med. 2007;37(5):357–81.  https://doi.org/10.1053/j.semnuclmed.2007.04.002.CrossRefPubMedGoogle Scholar
  98. 98.
    Bading JR, Shields AF. Imaging of cell proliferation: status and prospects. J Nucl Med. 2008;49(Suppl 2):64S–80S.  https://doi.org/10.2967/jnumed.107.046391.CrossRefPubMedGoogle Scholar
  99. 99.
    McCarville MB, Billups C, Wu J, Kaufman R, Kaste S, Coleman J, Sharp S, Nadel H, Charron M, Lederman H, Don S, Shochat S, Daw NC, Shulkin B. The role of PET/CT in assessing pulmonary nodules in children with solid malignancies. AJR Am J Roentgenol. 2013;201(6):W900–5.  https://doi.org/10.2214/AJR.12.10205.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Laje P, States LJ, Zhuang H, Becker SA, Palladino AA, Stanley CA, Adzick NS. Accuracy of PET/CT scan in the diagnosis of the focal form of congenital hyperinsulinism. J Pediatr Surg. 2013;48(2):388–93.  https://doi.org/10.1016/j.jpedsurg.2012.11.025.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Bastawrous S, Bhargava P, Behnia F, Djang DS, Haseley DR. Newer PET application with an old tracer: role of 18F-NaF skeletal PET/CT in oncologic practice. Radiographics. 2014;34(5):1295–316.  https://doi.org/10.1148/rg.345130061.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of RadiologyThe Children’s Hospital of Philadelphia (CHOP), Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of RadiologyBoston Children’s Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations