Advertisement

Radiation Dose Considerations in Pediatric Oncologic Imaging

  • Karen E. Thomas
  • Frederic H. FaheyEmail author
Chapter
Part of the Pediatric Oncology book series (PEDIATRICO)

Abstract

Increasing awareness of the potential risks of ionizing radiation in imaging has led oncologists and radiologists to review many aspects of how and when pediatric oncology patients are imaged, with a greater emphasis on study justification and dose optimization. In this chapter we will review the background to current concerns regarding potential future increased malignancy risk, discuss dose estimation, provide an overview of dose optimization strategies and typical radiation doses for commonly performed studies, and, finally, discuss some of the issues and challenges around communication with patients and their families.

Keywords

Radiation dose Radiation protection Dose-saving technology Dose reduction Communication 

References

  1. 1.
    NCI. SEER cancer statistics review, 1975-2014. Bethesda, MD: National Cancer Institute; 2017. https://seer.cancer.gov/csr/1975_2014/, based on November 2016 SEER data submission, posted to the SEER web site, April 2017.Google Scholar
  2. 2.
    McHugh K, Roebuck DJ. Pediatric oncology surveillance imaging: two recommendations. Abandon CT scanning, and randomize to imaging or solely clinical follow-up. Pediatr Blood Cancer. 2014;61(1):3–6.CrossRefGoogle Scholar
  3. 3.
    Bhatia S, Yasui Y, Robison LL, et al. High risk of subsequent neoplasms continues with extended follow-up of childhood Hodgkin’s disease: report from the Late Effects Study Group. J Clin Oncol. 2003;21(23):4386–94.CrossRefGoogle Scholar
  4. 4.
    Garwicz S, Anderson H, Olsen JH, et al. Second malignant neoplasms after cancer in childhood and adolescence: a population-based case-control study in the 5 Nordic countries. The Nordic Society for Pediatric Hematology and Oncology. The Association of the Nordic Cancer Registries. Int J Cancer. 2000;88(4):672–8.CrossRefGoogle Scholar
  5. 5.
    Ozasa K, Shimizu Y, Suyama A, et al. Studies of the mortality of atomic bomb survivors, Report 14, 1950-2003: an overview of cancer and noncancer diseases. Radiat Res. 2011;177(3):229–43.CrossRefGoogle Scholar
  6. 6.
    National Research Council. Committee to assess health risks from exposure to low levels of ionizing radiation. Health risks from exposure to low levels of ionizing radiation: Beir VII Phase II. Washington, DC: National Academic Press; 2006.Google Scholar
  7. 7.
    Siegel JA, Pennington CW, Sacks B. Subjecting radiologic imaging to the linear no-threshold hypothesis: a non sequitur of non-trivial proportion. J Nucl Med. 2017;58(1):1–6.CrossRefGoogle Scholar
  8. 8.
    UNSCotEoAR. Effects of radiation exposure of children. Vol II Annex B. New York, NY: UNSCEAR, United Nations; 2013.Google Scholar
  9. 9.
    Martin CJ. Effective dose: how should it be applied to medical exposures? Br J Radiol. 2007;80(956):639–47.CrossRefGoogle Scholar
  10. 10.
    Harrison JD, Balonov M, Martin CJ, et al. Use of effective dose. Ann ICRP. 2016;45(1 Suppl):215–24.CrossRefGoogle Scholar
  11. 11.
    Fisher DR, Fahey FH. Appropriate use of effective dose in radiation protection and risk assessment. Health Phys. 2017;113(2):102–9.CrossRefGoogle Scholar
  12. 12.
    Mettler FA Jr, Huda W, Yoshizumi TT, Mahesh M. Effective doses in radiology and diagnostic nuclear medicine: a catalog. Radiology. 2008;248(1):254–63.CrossRefGoogle Scholar
  13. 13.
    Ahmed BA, Connolly BL, Shroff P, et al. Cumulative effective doses from radiologic procedures for pediatric oncology patients. Pediatrics. 2010;126(4):e851–8.CrossRefGoogle Scholar
  14. 14.
    Owens C, Li BK, Thomas KE, Irwin MS. Surveillance imaging and radiation exposure in the detection of relapsed neuroblastoma. Pediatr Blood Cancer. 2016;63(10):1786–93.CrossRefGoogle Scholar
  15. 15.
    Glatz AC, Purrington KS, Klinger A, et al. Cumulative exposure to medical radiation for children requiring surgery for congenital heart disease. J Pediatr. 2014;164(4):789–794.e710.CrossRefGoogle Scholar
  16. 16.
    WHO. Communicating radiation risks in paediatric imaging: information to support health care discussions about benefit and risk. Geneva: World Health Organization; 2016.Google Scholar
  17. 17.
    Fahey FH, Treves ST, Adelstein SJ. Minimizing and communicating radiation risk in pediatric nuclear medicine. J Nucl Med. 2011;52(8):1240–51.PubMedGoogle Scholar
  18. 18.
    Smith-Bindman R, Lipson J, Marcus R, et al. Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer. Arch Intern Med. 2009;169(22):2078–86.CrossRefGoogle Scholar
  19. 19.
    Thomas KE. CT update: use, dose variability and diagnostic reference levels. Diagn Imaging Eur. 2012;(July):27–30.Google Scholar
  20. 20.
    Lee C, Pearce MS, Salotti JA, et al. Reduction in radiation doses from paediatric CT scans in Great Britain. Br J Radiol. 2016;89(1060):20150305.CrossRefGoogle Scholar
  21. 21.
    Chong AL, Grant RM, Ahmed BA, Thomas KE, Connolly BL, Greenberg M. Imaging in pediatric patients: time to think again about surveillance. Pediatr Blood Cancer. 2010;55(3):407–13.CrossRefGoogle Scholar
  22. 22.
    Pierobon J, Webber CE, Nayiager T, Barr RD, Moran GR, Gulenchyn KY. Radiation doses originating from diagnostic procedures during the treatment and follow-up of children and adolescents with malignant lymphoma. J Radiol Prot. 2011;31(1):83–93.CrossRefGoogle Scholar
  23. 23.
    Chawla SC, Federman N, Zhang D, et al. Estimated cumulative radiation dose from PET/CT in children with malignancies: a 5-year retrospective review. Pediatr Radiol. 2010;40(5):681–6.CrossRefGoogle Scholar
  24. 24.
    Nievelstein RA, Quarles van Ufford HM, Kwee TC, et al. Radiation exposure and mortality risk from CT and PET imaging of patients with malignant lymphoma. Eur Radiol. 2012;22(9):1946–54.CrossRefGoogle Scholar
  25. 25.
    Boutis K, Thomas KE. Radiation dose awareness and disclosure practice in paediatric emergency medicine: how far have we come? Br J Radiol. 2016;89(1061):20160022.CrossRefGoogle Scholar
  26. 26.
    Goske MJ, Applegate KE, Boylan J, et al. Image Gently(SM): a national education and communication campaign in radiology using the science of social marketing. J Am Coll Radiol. 2008;5(12):1200–5.CrossRefGoogle Scholar
  27. 27.
    Mayo-Smith WW, Morin RL. Image wisely: the beginning, current status, and future opportunities. J Am Coll Radiol. 2017;14(3):442–3.CrossRefGoogle Scholar
  28. 28.
    SNMMI position statement on dose optimization for nuclear medicine and molecular imaging procedures. 2012. Accessed 22 Dec 2017. http://snmmi.files.cms-plus.com/docs/SNM_Position_Statement_on_Dose_Optimization_FINAL_June_2012.pdf.
  29. 29.
    Weiser DA, Kaste SC, Siegel MJ, Adamson PC. Imaging in childhood cancer: a Society for Pediatric Radiology and Children’s Oncology Group Joint Task Force report. Pediatr Blood Cancer. 2013;60(8):1253–60.CrossRefGoogle Scholar
  30. 30.
    Seibel NL, Janeway K, Allen CE, et al. Pediatric oncology enters an era of precision medicine. Curr Probl Cancer. 2017;41(3):194–200.CrossRefGoogle Scholar
  31. 31.
    Towbin AJ, Trout AT, Roebuck DJ. Advances in oncologic imaging. Eur J Pediatr Surg. 2014;24(6):474–81.CrossRefGoogle Scholar
  32. 32.
    Rappaport BA, Suresh S, Hertz S, Evers AS, Orser BA. Anesthetic neurotoxicity--clinical implications of animal models. N Engl J Med. 2015;372(9):796–7.CrossRefGoogle Scholar
  33. 33.
    Weller A, Barber JL, Olsen OE. Gadolinium and nephrogenic systemic fibrosis: an update. Pediatr Nephrol. 2014;29(10):1927–37.CrossRefGoogle Scholar
  34. 34.
    Kanal E, Tweedle MF. Residual or retained gadolinium: practical implications for radiologists and our patients. Radiology. 2015;275(3):630–4.CrossRefGoogle Scholar
  35. 35.
    Ramalho J, Semelka RC, Ramalho M, Nunes RH, AlObaidy M, Castillo M. Gadolinium-based contrast agent accumulation and toxicity: an update. AJNR Am J Neuroradiol. 2016;37(7):1192–8.CrossRefGoogle Scholar
  36. 36.
    Racadio JM. Controlling radiation exposure during interventional procedures in childhood cancer patients. Pediatr Radiol. 2009;39(Suppl 1):S71–3.CrossRefGoogle Scholar
  37. 37.
    Goske MJ, Frush DP, Brink JA, Kaste SC, Butler PF, Pandharipande PV. Curbing potential radiation-induced cancer risks in oncologic imaging: perspectives from the ‘image gently’ and ‘image wisely’ campaigns. Oncology (Williston Park). 2014;28(3):232–8. 243.Google Scholar
  38. 38.
    Nievelstein RA, van Dam IM, van der Molen AJ. Multidetector CT in children: current concepts and dose reduction strategies. Pediatr Radiol. 2010;40(8):1324–44.CrossRefGoogle Scholar
  39. 39.
    Strauss KJ, Goske MJ, Kaste SC, et al. Image gently: ten steps you can take to optimize image quality and lower CT dose for pediatric patients. AJR Am J Roentgenol. 2010;194(4):868–73.CrossRefGoogle Scholar
  40. 40.
    Nelson TR. Practical strategies to reduce pediatric CT radiation dose. J Am Coll Radiol. 2014;11(3):292–9.CrossRefGoogle Scholar
  41. 41.
    Hernanz-Schulman M, Goske MJ, Bercha IH, Strauss KJ. Pause and pulse: ten steps that help manage radiation dose during pediatric fluoroscopy. AJR Am J Roentgenol. 2011;197(2):475–81.CrossRefGoogle Scholar
  42. 42.
    Willis CE. Strategies for dose reduction in ordinary radiographic examinations using CR and DR. Pediatr Radiol. 2004;34(Suppl 3):S196–200. discussion S234–141.CrossRefGoogle Scholar
  43. 43.
    Connolly B, Racadio J, Towbin R. Practice of ALARA in the pediatric interventional suite. Pediatr Radiol. 2006;36(Suppl 2):163–7.CrossRefGoogle Scholar
  44. 44.
    Grant FD, Gelfand MJ, Drubach LA, Treves ST, Fahey FH. Radiation doses for pediatric nuclear medicine studies: comparing the North American consensus guidelines and the pediatric dosage card of the European Association of Nuclear Medicine. Pediatr Radiol. 2015;45(5):706–13.CrossRefGoogle Scholar
  45. 45.
    Lassmann M, Treves ST, Group ESPDHW. Paediatric radiopharmaceutical administration: harmonization of the 2007 EANM paediatric dosage card (version 1.5. 2008) and the 2010 North American consensus guidelines. Eur J Nucl Med Mol Imaging. 2014;41(5):1036–41.CrossRefGoogle Scholar
  46. 46.
    Treves ST, Gelfand MJ, Fahey FH, Parisi MT. 2016 update of the North American Consensus Guidelines for pediatric administered radiopharmaceutical activities. J Nucl Med. 2016;57(12):15N–8N.PubMedGoogle Scholar
  47. 47.
    Fahey FH, Bom HH, Chiti A, et al. Standardization of administered activities in pediatric nuclear medicine: a report of the first nuclear medicine global initiative project, Part 2-Current standards and the path toward global standardization. J Nucl Med. 2016;57(7):1148–57.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Diagnostic ImagingHospital for Sick ChildrenTorontoCanada
  2. 2.Division of Nuclear Medicine and Molecular Imaging, Department of RadiologyBoston Children’s HospitalBostonUSA

Personalised recommendations