Advertisement

Radiation Treatment Planning in Pediatric Oncology

  • Naomi A. Lavan
  • Henry C. MandevilleEmail author
Chapter
Part of the Pediatric Oncology book series (PEDIATRICO)

Abstract

Radiotherapy (RT) plays an important role in the multimodality treatment of a number of pediatric tumors, both in the curative and palliative settings. In general, treatment paradigms in pediatric oncology look to risk-stratify and response-adapt treatment for patients, with the overarching tenet of delivering the minimum treatment required for cure. This paradigm looks to minimize long-term sequelae in those treated at young ages, the majority of whom will be long-term survivors. The late consequences of radiotherapy, dependent on the treated site, can include cognitive, endocrine, growth, vascular, and fertility effects and the induction of second malignancy.

In recent decades, RT treatment delivery techniques have become increasingly sophisticated. It is now possible to deliver complex treatments where the prescribed dose is sculpted to the target, and normal tissues are maximally spared moderate to high doses. This is achieved through increased accuracy and precision in target definition and the ability to better visualize the target during the course of treatment, thereby reducing geometric uncertainties in treatment delivery. Imaging plays an integral role in the ability to deliver such accurate and precise RT treatment.

Keywords

Pediatrics Radiation therapy Radiotherapy treatment planning Radiotherapy imaging Pediatric stereotactic radiotherapy Molecular radiotherapy Brachytherapy 

References

  1. 1.
    Olch AJ. Pediatric radiotherapy planning and treatment. London: CRC Press; 2013.CrossRefGoogle Scholar
  2. 2.
    Jones D. ICRU report 50—prescribing, recording and reporting photon beam therapy. Med Phys. 1994;21(6):833–4.CrossRefGoogle Scholar
  3. 3.
    Landberg T, Chavaudra J, Dobbs J, Gerard JP, Hanks G, Horiot JC, et al. Report 62. J Int Comm Radiat Units Meas. 1999;32(1):1–52.Google Scholar
  4. 4.
    ICRU. Report 83. J Int Comm Radiat Units Meas. 2010;10(1):1–106.Google Scholar
  5. 5.
    International Commission on Radiation Units and Measurements (ICRU). Report 62. Prescribing, recording and reporting photon beam therapy (supplement to ICRU report 50). Bethesda, MD: ICRU; 1999.Google Scholar
  6. 6.
    van Herk M, Remeijer P, Rasch C, Lebesque JV. The probability of correct target dosage: dose-population histograms for deriving treatment margins in radiotherapy. Int J Radiat Oncol Biol Phys. 2000;47(4):1121–35.CrossRefGoogle Scholar
  7. 7.
    Keall PJ, Mageras GS, Balter JM, Emery RS, Forster KM, Jiang SB, et al. The management of respiratory motion in radiation oncology report of AAPM Task Group 76. Med Phys. 2006;33(10):3874–900.CrossRefGoogle Scholar
  8. 8.
    Gaze MN, Boterberg T, Dieckmann K, Hormann M, Gains JE, Sullivan KP, et al. Results of a quality assurance review of external beam radiation therapy in the International Society of Paediatric Oncology (Europe) Neuroblastoma Group’s High-risk Neuroblastoma Trial: a SIOPEN study. Int J Radiat Oncol Biol Phys. 2013;85(1):170–4.CrossRefGoogle Scholar
  9. 9.
    Chen AB, Killoran J, Kim H, Mamon H. Treatment planning for resected abdominal tumors: differences in organ position between diagnostic and radiation-planning computed tomography scans. Int J Radiat Oncol Biol Phys. 2005;63(5):1613–20.CrossRefGoogle Scholar
  10. 10.
    Keall PJ, Barton M, Crozier S. The Australian magnetic resonance imaging–linac program. Semin Radiat Oncol. 2014;24(3):203–6.CrossRefGoogle Scholar
  11. 11.
    Mutic S, Dempsey JF. The ViewRay system: magnetic resonance–guided and controlled radiotherapy. Semin Radiat Oncol. 2014;24(3):196–9.CrossRefGoogle Scholar
  12. 12.
    Lagendijk JJW, Raaymakers BW, van Vulpen M. The magnetic resonance imaging–linac system. Semin Radiat Oncol. 2014;24(3):207–9.CrossRefGoogle Scholar
  13. 13.
    Fallone BG. The rotating biplanar linac–magnetic resonance imaging system. Semin Radiat Oncol. 2014;24(3):200–2.CrossRefGoogle Scholar
  14. 14.
    Chen GT, Kung JH, Beaudette KP. Artifacts in computed tomography scanning of moving objects. Semin Radiat Oncol. 2004;14(1):19–26.CrossRefGoogle Scholar
  15. 15.
    Vedam SS, Keall PJ, Kini VR, Mostafavi H, Shukla HP, Mohan R. Acquiring a four-dimensional computed tomography dataset using an external respiratory signal. Phys Med Biol. 2003;48(1):45–62.CrossRefGoogle Scholar
  16. 16.
    Rietzel E, Pan T, Chen GT. Four-dimensional computed tomography: image formation and clinical protocol. Med Phys. 2005;32(4):874–89.CrossRefGoogle Scholar
  17. 17.
    Pai Panandiker AS, Sharma S, Naik MH, Wu S, Hua C, Beltran C, et al. Novel assessment of renal motion in children as measured via four-dimensional computed tomography. Int J Radiat Oncol Biol Phys. 2012;82(5):1771–6.CrossRefGoogle Scholar
  18. 18.
    Uh J, Krasin MJ, Li Y, Li X, Tinkle C, Lucas JT Jr, et al. Quantification of pediatric abdominal organ motion with a 4-dimensional magnetic resonance imaging method. Int J Radiat Oncol Biol Phys. 2017;99(1):227–37.CrossRefGoogle Scholar
  19. 19.
    Huijskens SC, van Dijk IW, Visser J, Rasch CR, Alderliesten T, Bel A. Magnitude and variability of respiratory-induced diaphragm motion in children during image-guided radiotherapy. Radiother Oncol. 2017;123:263.CrossRefGoogle Scholar
  20. 20.
    Huijskens SC, van Dijk IWEM, de Jong R, Visser J, Fajardo RD, Ronckers CM, et al. Quantification of renal and diaphragmatic interfractional motion in pediatric image-guided radiation therapy: a multicenter study. Radiother Oncol. 2015;117(3):425–31.CrossRefGoogle Scholar
  21. 21.
    van Dijk IW, Huijskens SC, de Jong R, Visser J, Fajardo RD, Rasch CR, et al. Interfractional renal and diaphragmatic position variation during radiotherapy in children and adults: is there a difference? Acta oncologica. Stockholm: Sweden; 2017. p. 1–7.Google Scholar
  22. 22.
    Nazmy MS, Khafaga Y, Mousa A, Khalil E. Cone beam CT for organs motion evaluation in pediatric abdominal neuroblastoma. Radiother Oncol. 2012;102(3):388–92.CrossRefGoogle Scholar
  23. 23.
    Kannan S, Teo BK, Solberg T, Hill-Kayser C. Organ motion in pediatric high-risk neuroblastoma patients using four-dimensional computed tomography. J Appl Clin Med Phys. 2017;18(1):107–14.PubMedGoogle Scholar
  24. 24.
    Beltran C, Pai Panandiker AS, Krasin MJ, Merchant TE. Daily image-guided localization for neuroblastoma. J Appl Clin Med Phys. 2010;11(4):3388.CrossRefGoogle Scholar
  25. 25.
    Bhandare N, Jackson A, Eisbruch A, Pan CC, Flickinger JC, Antonelli P, et al. Radiation therapy and hearing loss. Int J Radiat Oncol Biol Phys. 2010;76(3):S50–S7.CrossRefGoogle Scholar
  26. 26.
    Dawson LA, Kavanagh BD, Paulino AC, Das SK, Miften M, Li XA, et al. Radiation-associated kidney injury. Int J Radiat Oncol Biol Phys. 2010;76(3):S108–S15.CrossRefGoogle Scholar
  27. 27.
    Deasy JO, Moiseenko V, Marks L, Chao KSC, Nam J, Eisbruch A. Radiotherapy dose-volume effects on salivary gland function. Int J Radiat Oncol Biol Phys. 2010;76(3):S58–63.CrossRefGoogle Scholar
  28. 28.
    Gagliardi G, Constine LS, Moiseenko V, Correa C, Pierce LJ, Allen AM, et al. Radiation dose-volume effects in the heart. Int J Radiat Oncol Biol Phys. 2010;76(3):S77–85.CrossRefGoogle Scholar
  29. 29.
    Kavanagh BD, Pan CC, Dawson LA, Das SK, Li XA, Ten Haken RK, et al. Radiation dose-volume effects in the stomach and small bowel. Int J Radiat Oncol Biol Phys. 2010;76(3):S101–S7.CrossRefGoogle Scholar
  30. 30.
    Kirkpatrick JP, van der Kogel AJ, Schultheiss TE. Radiation dose-volume effects in the spinal cord. Int J Radiat Oncol Biol Phys. 2010;76(3):S42–S9.CrossRefGoogle Scholar
  31. 31.
    Lawrence YR, Li XA, el Naqa I, Hahn CA, Marks LB, Merchant TE, et al. Radiation dose-volume effects in the brain. Int J Radiat Oncol Biol Phys. 2010;76(3):S20–S7.CrossRefGoogle Scholar
  32. 32.
    Marks LB, Bentzen SM, Deasy JO, Kong F-M, Bradley JD, Vogelius IS, et al. Radiation dose-volume effects in the lung. Int J Radiat Oncol Biol Phys. 2010;76(3):S70–S6.CrossRefGoogle Scholar
  33. 33.
    Mayo C, Martel MK, Marks LB, Flickinger J, Nam J, Kirkpatrick J. Radiation dose-volume effects of optic nerves and chiasm. Int J Radiat Oncol Biol Phys. 2010;76(3):S28–35.CrossRefGoogle Scholar
  34. 34.
    Mayo C, Yorke E, Merchant TE. Radiation associated brainstem injury. Int J Radiat Oncol Biol Phys. 2010;76(3):S36–41.CrossRefGoogle Scholar
  35. 35.
    Michalski JM, Gay H, Jackson A, Tucker SL, Deasy JO. Radiation dose-volume effects in radiation-induced rectal injury. Int J Radiat Oncol Biol Phys. 2010;76(3):S123–S9.CrossRefGoogle Scholar
  36. 36.
    Pan CC, Kavanagh BD, Dawson LA, Li XA, Das SK, Miften M, et al. Radiation-associated liver injury. Int J Radiat Oncol Biol Phys. 2010;76(3):S94–S100.CrossRefGoogle Scholar
  37. 37.
    Rancati T, Schwarz M, Allen AM, Feng F, Popovtzer A, Mittal B, et al. Radiation dose-volume effects in the larynx and pharynx. Int J Radiat Oncol Biol Phys. 2010;76(3):S64–S9.CrossRefGoogle Scholar
  38. 38.
    Roach M III, Nam J, Gagliardi G, El Naqa I, Deasy JO, Marks LB. Radiation dose-volume effects and the penile bulb. Int J Radiat Oncol Biol Phys. 2010;76(3):S130–S4.CrossRefGoogle Scholar
  39. 39.
    Viswanathan AN, Yorke ED, Marks LB, Eifel PJ, Shipley WU. Radiation dose-volume effects of the urinary bladder. Int J Radiat Oncol Biol Phys. 2010;76(3):S116–S22.CrossRefGoogle Scholar
  40. 40.
    Werner-Wasik M, Yorke E, Deasy J, Nam J, Marks LB. Radiation dose-volume effects in the esophagus. Int J Radiat Oncol Biol Phys. 2010;76(3):S86–93.CrossRefGoogle Scholar
  41. 41.
    PENTEC. Available from: https://www.pentecradiation.org/.
  42. 42.
    Dawson LA, Jaffray DA. Advances in image-guided radiation therapy. J Clin Oncol. 2007;25(8):938–46.CrossRefGoogle Scholar
  43. 43.
    De Los Santos J, Popple R, Agazaryan N, Bayouth JE, Bissonnette JP, Bucci MK, et al. Image guided radiation therapy (IGRT) technologies for radiation therapy localization and delivery. Int J Radiat Oncol Biol Phys. 2013;87(1):33–45.CrossRefGoogle Scholar
  44. 44.
    Beltran C, Pegram A, Merchant TE. Dosimetric consequences of rotational errors in radiation therapy of pediatric brain tumor patients. Radiother Oncol. 2012;102(2):206–9.CrossRefGoogle Scholar
  45. 45.
    Beltran C, Krasin MJ, Merchant TE. Inter- and intrafractional positional uncertainties in pediatric radiotherapy patients with brain and head and neck tumors. Int J Radiat Oncol Biol Phys. 2011;79(4):1266–74.CrossRefGoogle Scholar
  46. 46.
    Beltran C, Merchant TE. Dependence of intrafraction motion on fraction duration for pediatric patients with brain tumors. J Appl Clin Med Phys. 2011;12(4):3609.CrossRefGoogle Scholar
  47. 47.
    Beltran C, Sharma S, Merchant TE. Role of adaptive radiation therapy for pediatric patients with diffuse pontine glioma. J Appl Clin Med Phys. 2011;12(2):3421.CrossRefGoogle Scholar
  48. 48.
    Beltran C, Naik M, Merchant TE. Dosimetric effect of target expansion and setup uncertainty during radiation therapy in pediatric craniopharyngioma. Radiother Oncol. 2010;97(3):399–403.CrossRefGoogle Scholar
  49. 49.
    Beltran C, Naik M, Merchant TE. Dosimetric effect of setup motion and target volume margin reduction in pediatric ependymoma. Radiother Oncol. 2010;96(2):216–22.CrossRefGoogle Scholar
  50. 50.
    Beltran C, Trussell J, Merchant TE. Dosimetric impact of intrafractional patient motion in pediatric brain tumor patients. Med Dosim. 2010;35(1):43–8.CrossRefGoogle Scholar
  51. 51.
    Altunbas C, Hankinson TC, Miften M, Tello T, Plimpton SR, Stuhr K, et al. Rotational setup errors in pediatric stereotactic radiation therapy. Pract Radiat Oncol. 2013;3(3):194–8.CrossRefGoogle Scholar
  52. 52.
    Beltran C, Lukose R, Gangadharan B, Bani-Hashemi A, Faddegon BA. Image quality & dosimetric property of an investigational imaging beam line MV-CBCT. J Appl Clin Med Phys. 2009;10(3):3023.CrossRefGoogle Scholar
  53. 53.
    Sonke JJ, Zijp L, Remeijer P, van Herk M. Respiratory correlated cone beam CT. Med Phys. 2005;32(4):1176–86.CrossRefGoogle Scholar
  54. 54.
    Jaffray DA. Image-guided radiotherapy: from current concept to future perspectives. Nat Rev Clin Oncol. 2012;9(12):688–99.CrossRefGoogle Scholar
  55. 55.
    Murphy ES, Chao ST, Angelov L, Vogelbaum MA, Barnett G, Jung E, et al. Radiosurgery for pediatric brain tumors. Pediatr Blood Cancer. 2016;63(3):398–405.CrossRefGoogle Scholar
  56. 56.
    Hoffman LM, Plimpton SR, Foreman NK, Stence NV, Hankinson TC, Handler MH, et al. Fractionated stereotactic radiosurgery for recurrent ependymoma in children. J Neurooncol. 2014;116(1):107–11.CrossRefGoogle Scholar
  57. 57.
    Saran F, Baumert BG, Creak AL, Warrington AP, Ashley S, Traish D, et al. Hypofractionated stereotactic radiotherapy in the management of recurrent or residual medulloblastoma/PNET. Pediatr Blood Cancer. 2008;50(3):554–60.CrossRefGoogle Scholar
  58. 58.
    Brown LC, Lester RA, Grams MP, Haddock MG, Olivier KR, Arndt CA, et al. Stereotactic body radiotherapy for metastatic and recurrent ewing sarcoma and osteosarcoma. Sarcoma. 2014;2014:418270.CrossRefGoogle Scholar
  59. 59.
    Yock TI, Tarbell NJ. Technology insight: proton beam radiotherapy for treatment in pediatric brain tumors. Nat Clin Pract Oncol. 2004;1(2):97–103. quiz 1 p following 11.CrossRefGoogle Scholar
  60. 60.
    Alcorn SR, Chen MJ, Claude L, Dieckmann K, Ermoian RP, Ford EC, et al. Practice patterns of photon and proton pediatric image guided radiation treatment: results from an International Pediatric Research consortium. Pract Radiat Oncol. 2014;4(5):336–41.CrossRefGoogle Scholar
  61. 61.
    Peeler CR, Mirkovic D, Titt U, Blanchard P, Gunther JR, Mahajan A, et al. Clinical evidence of variable proton biological effectiveness in pediatric patients treated for ependymoma. Radiother Oncol. 2016;121(3):395–401.CrossRefGoogle Scholar
  62. 62.
    Merchant TE. Clinical controversies: proton therapy for pediatric tumors. Semin Radiat Oncol. 2013;23(2):97–108.CrossRefGoogle Scholar
  63. 63.
    National Cancer Research Institute (NCRI). CTRad: identifying opportunities to promote progress in molecular radiotherapy research in the UK, vol. 2016. London: NCRI; 2016.Google Scholar
  64. 64.
  65. 65.
  66. 66.
    Trial Evaluating and Comparing Two Intensification Treatment Strategies for Metastatic Neuroblastoma Patients With a Poor Response to Induction Chemotherapy (VERITAS). 2017. Accessed on 1 Oct 2017. Available from: https://clinicaltrials.gov/ct2/show/NCT03165292.
  67. 67.
    O’Shea T, Bamber J, Fontanarosa D, van der Meer S, Verhaegen F, Harris E. Review of ultrasound image guidance in external beam radiotherapy part II: intra-fraction motion management and novel applications. Phys Med Biol. 2016;61(8):R90–R137.CrossRefGoogle Scholar
  68. 68.
    Fontanarosa D, van der Meer S, Bamber J, Harris E, O’Shea T, Verhaegen F. Review of ultrasound image guidance in external beam radiotherapy: I. Treatment planning and inter-fraction motion management. Phys Med Biol. 2015;60(3):R77–114.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.The Royal Marsden NHS Foundation Trust and Institute of Cancer ResearchSuttonUK

Personalised recommendations