Advertisement

Radioisotope Therapies: Iodine-131, I-131-MIBG, and Beyond

  • Neha S. KwatraEmail author
  • Marguerite T. Parisi
  • Barry L. Shulkin
Chapter
Part of the Pediatric Oncology book series (PEDIATRICO)

Abstract

Radioisotopes play an integral role in the imaging and treatment of certain types of pediatric malignancies, notably differentiated thyroid cancer (DTC) and high-risk neuroblastoma. This chapter focuses on radioactive iodine (I-131) therapy of pediatric DTC and I-131-metaiodobenzylguanidine (131I-mIBG) therapy of high-risk neuroblastoma. The epidemiology of pediatric DTC and the current status of I-131 therapy including the recommendations from the recent pediatric guidelines of the American Thyroid Association (ATA) are outlined. The role of diagnostic whole-body I-123 scintigraphy and dosimetry in guiding I-131 therapy is also discussed. Treatment-related considerations including outpatient versus inpatient setting, patient preparation, education, and radiation safety considerations are reviewed. This chapter also includes information on the epidemiology of neuroblastoma, as well as the background and current status of 131I-mIBG therapy in this disease. Logistics of establishing a 131I-mIBG therapy program and the process of safe delivery of 131I-mIBG to high-risk neuroblastoma patients are discussed in detail. Side effects of therapeutic 131I-mIBG are also outlined. Finally, a concise overview of novel radionuclide therapies such as peptide receptor radionuclide therapy, radionuclide antibody therapy, and palliative bone-seeking radionuclide therapies is presented.

Keywords

Radionuclide Differentiated thyroid cancer Neuroblastoma Radiation safety Treatment Dosimetry Peptide receptor Pediatrics 131I-mIBG I-131 

References

  1. 1.
    Fahey FH, Grant FD, Thrall JH. Saul Hertz, MD, and the birth of radionuclide therapy. EJNMMI Phys. 2017;4:15.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Means JH. The use of radioactive iodine in the diagnosis and treatment of thyroid diseases. Bull N Y Acad Med. 1948;24:273–86.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Seidlin SM, Marinelli LD, Oshry E. Radioactive iodine therapy; effect on functioning metastases of adenocarcinoma of the thyroid. JAMA. 1946;132:838–47.CrossRefGoogle Scholar
  4. 4.
    Jadvar H. Targeted radionuclide therapy: an evolution toward precision cancer treatment. AJR Am J Roentgenol. 2017;209:277–88.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Zukotynski K, Jadvar H, Capala J, Fahey F. Targeted radionuclide therapy: practical applications and future prospects. Biomark Cancer. 2016;8:35–8.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Yeong C-H, Cheng M, Ng K-H. Therapeutic radionuclides in nuclear medicine: current and future prospects. J Zhejiang Univ Sci B. 2014;15:845–63.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Howlader N, Noone AM, Krapcho M, Miller D, Bishop K, Kosary CL, Yu M, Ruhl J, Tatalovich Z, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA, editors. SEER Cancer Statistics Review, 1975-2014. Bethesda, MD: National Cancer Institute; 2017. Available at https://seer.cancer.gov/csr/1975_2014/, based on November 2016 SEER data submission, posted to the SEER web site, April 2017. Accessed 10 Oct 2017.Google Scholar
  8. 8.
    Francis GL, Waguespack SG, Bauer AJ, Angelos P, Benvenga S, Cerutti JM, et al. Management guidelines for children with thyroid nodules and differentiated thyroid cancer. Thyroid. 2015;25:716–59.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Hogan AR, Zhuge Y, Perez EA, Koniaris LG, Lew JI, Sola JE. Pediatric thyroid carcinoma: incidence and outcomes in 1753 patients. J Surg Res. 2009;156:167–72.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    LAG R, Smith MA, Gurney JG, Linet M, Tamra T, Young JL, Bunin GR, editors. Cancer incidence and survival among children and adolescents: United States SEER Program 1975-1995, SEER Program. NIH Pub. No. 99-4649. Bethesda, MD: National Cancer Institute; 1999. Available at https://seer.cancer.gov/archive/publications/childhood. Accessed 10 Oct 2017.Google Scholar
  11. 11.
    Kiratli PO, Volkan-Salanci B, Günay EC, Varan A, Akyüz C, Büyükpamukçu M. Thyroid cancer in pediatric age group: an institutional experience and review of the literature. J Pediatr Hematol Oncol. 2013;35:93–7.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Rivkees SA, Mazzaferri EL, Verburg FA, Reiners C, Luster M, Breuer CK, et al. The treatment of differentiated thyroid cancer in children: emphasis on surgical approach and radioactive iodine therapy. Endocr Rev. 2011;32:798–826.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Vergamini LB, Frazier AL, Abrantes FL, Ribeiro KB, Rodriguez-Galindo C. Increase in the incidence of differentiated thyroid carcinoma in children, adolescents, and young adults: a population-based study. J Pediatr. 2014;164:1481–5.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Pacini F. Thyroid cancer in children and adolescents. J Endocrinol Invest. 2002;25:572–3.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Hay ID, Gonzalez-Losada T, Reinalda MS, Honetschlager JA, Richards ML, Thompson GB. Long-term outcome in 215 children and adolescents with papillary thyroid cancer treated during 1940 through 2008. World J Surg. 2010;34:1192–202.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Parisi MT, Eslamy H, Mankoff D. Management of differentiated thyroid cancer in children: focus on the american thyroid association pediatric guidelines. Semin Nucl Med. 2016;46:147–64.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Brink JS, van Heerden JA, McIver B, Salomao DR, Farley DR, Grant CS, et al. Papillary thyroid cancer with pulmonary metastases in children: long-term prognosis. Surgery. 2000;128:881–6. discussion 886–887.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Chow S-M, Law SCK, Mendenhall WM, Au S-K, Yau S, Mang O, et al. Differentiated thyroid carcinoma in childhood and adolescence-clinical course and role of radioiodine. Pediatr Blood Cancer. 2004;42:176–83.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Giuffrida D, Scollo C, Pellegriti G, Lavenia G, Iurato MP, Pezzin V, et al. Differentiated thyroid cancer in children and adolescents. J Endocrinol Invest. 2002;25:18–24.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Pawelczak M, David R, Franklin B, Kessler M, Lam L, Shah B. Outcomes of children and adolescents with well-differentiated thyroid carcinoma and pulmonary metastases following 131I treatment: a systematic review. Thyroid. 2010;20:1095–101.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Reiners C, Farahati J. 131I therapy of thyroid cancer patients. Q J Nucl Med. 1999;43:324–35.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Robbins RJ, Schlumberger MJ. The evolving role of (131)I for the treatment of differentiated thyroid carcinoma. J Nucl Med. 2005;46(Suppl 1):28S–37S.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Van Nostrand D. The benefits and risks of I-131 therapy in patients with well-differentiated thyroid cancer. Thyroid. 2009;19:1381–91.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Hay ID, Thompson GB, Grant CS, Bergstralh EJ, Dvorak CE, Gorman CA, et al. Papillary thyroid carcinoma managed at the Mayo Clinic during six decades (1940-1999): temporal trends in initial therapy and long-term outcome in 2444 consecutively treated patients. World J Surg. 2002;26:879–85.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Iyer NG, Morris LGT, Tuttle RM, Shaha AR, Ganly I. Rising incidence of second cancers in patients with low-risk (T1N0) thyroid cancer who receive radioactive iodine therapy. Cancer. 2011;117:4439–46.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Jonklaas J, Cooper DS, Ain KB, Bigos T, Brierley JD, Haugen BR, et al. Radioiodine therapy in patients with stage I differentiated thyroid cancer. Thyroid. 2010;20:1423–4.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Schlumberger M, Catargi B, Borget I, Deandreis D, Zerdoud S, Bridji B, et al. Strategies of radioiodine ablation in patients with low-risk thyroid cancer. N Engl J Med. 2012;366:1663–73.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Tuttle RM, Leboeuf R, Shaha AR. Medical management of thyroid cancer: a risk adapted approach. J Surg Oncol. 2008;97:712–6.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Jarzab B, Handkiewicz-Junak D, Wloch J. Juvenile differentiated thyroid carcinoma and the role of radioiodine in its treatment: a qualitative review. Endocr Relat Cancer. 2005;12:773–803.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Newman KD, Black T, Heller G, Azizkhan RG, Holcomb GW, Sklar C, et al. Differentiated thyroid cancer: determinants of disease progression in patients <21 years of age at diagnosis: a report from the Surgical Discipline Committee of the Children’s Cancer Group. Ann Surg. 1998;227:533–41.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Brown AP, Chen J, Hitchcock YJ, Szabo A, Shrieve DC, Tward JD. The risk of second primary malignancies up to three decades after the treatment of differentiated thyroid cancer. J Clin Endocrinol Metab. 2008;93:504–15.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Rubino C, de Vathaire F, Dottorini ME, Hall P, Schvartz C, Couette JE, et al. Second primary malignancies in thyroid cancer patients. Br J Cancer. 2003;89:1638–44.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Hung W, Sarlis NJ. Current controversies in the management of pediatric patients with well-differentiated nonmedullary thyroid cancer: a review. Thyroid. 2002;12:683–702.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    McClellan DR, Francis GL. Thyroid cancer in children, pregnant women, and patients with Graves’ disease. Endocrinol Metab Clin North Am. 1996;25:27–48.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Parisi MT, Mankoff D. Differentiated pediatric thyroid cancer: correlates with adult disease, controversies in treatment. Semin Nucl Med. 2007;37:340–56.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Welch Dinauer CA, Tuttle RM, Robie DK, McClellan DR, Svec RL, Adair C, et al. Clinical features associated with metastasis and recurrence of differentiated thyroid cancer in children, adolescents and young adults. Clin Endocrinol (Oxf). 1998;49:619–28.CrossRefGoogle Scholar
  37. 37.
    Treves ST. Pediatric nuclear medicine and molecular imaging. New York, NY: Springer; 2014.CrossRefGoogle Scholar
  38. 38.
    WFE L, Zacharin MR, Waters K, Wheeler G, Johnston V, Hicks RJ. Management of paediatric thyroid carcinoma: recent experience with recombinant human thyroid stimulating hormone in preparation for radioiodine therapy. Intern Med J. 2006;36:564–70.CrossRefGoogle Scholar
  39. 39.
    Luster M, Handkiewicz-Junak D, Grossi A, Zacharin M, Taïeb D, Cruz O, et al. Recombinant thyrotropin use in children and adolescents with differentiated thyroid cancer: a multicenter retrospective study. J Clin Endocrinol Metab. 2009;94:3948–53.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Luster M, Lippi F, Jarzab B, Perros P, Lassmann M, Reiners C, et al. rhTSH-aided radioiodine ablation and treatment of differentiated thyroid carcinoma: a comprehensive review. Endocr Relat Cancer. 2005;12:49–64.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Bural G, Drubach L, Treves ST, Grant F. Thymic uptake of radioiodine in children and young adults with thyroid cancer. J Nucl Med. 2010;51:489.Google Scholar
  42. 42.
    Benua RS, Cicale NR, Sonenberg M, Rawson RW. The relation of radioiodine dosimetry to results and complications in the treatment of metastatic thyroid cancer. Am J Roentgenol Radium Ther Nucl Med. 1962;87:171–82.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Lassmann M, Hänscheid H, Verburg FA, Luster M. The use of dosimetry in the treatment of differentiated thyroid cancer. Q J Nucl Med Mol Imaging. 2011;55:107–15.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Tuttle RM, Leboeuf R, Robbins RJ, Qualey R, Pentlow K, Larson SM, et al. Empiric radioactive iodine dosing regimens frequently exceed maximum tolerated activity levels in elderly patients with thyroid cancer. J Nucl Med. 2006;47:1587–91.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Lassmann M, Hänscheid H, Chiesa C, Hindorf C, Flux G, Luster M, et al. EANM Dosimetry Committee series on standard operational procedures for pre-therapeutic dosimetry I: blood and bone marrow dosimetry in differentiated thyroid cancer therapy. Eur J Nucl Med Mol Imaging. 2008;35:1405–12.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Luster M, Lassmann M, Freudenberg LS, Reiners C. Thyroid cancer in childhood: management strategy, including dosimetry and long-term results. Hormones (Athens). 2007;6:269–78.CrossRefGoogle Scholar
  47. 47.
    Maxon HR, Englaro EE, Thomas SR, Hertzberg VS, Hinnefeld JD, Chen LS, et al. Radioiodine-131 therapy for well-differentiated thyroid cancer--a quantitative radiation dosimetric approach: outcome and validation in 85 patients. J Nucl Med. 1992;33:1132–6.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Tuttle RM, Grewal RK, Larson SM. Radioactive iodine therapy in poorly differentiated thyroid cancer. Nat Clin Pract Oncol. 2007;4:665–8.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    United States Nuclear Regulatory Commission Office of Federal and State. Material and environmental management programs 2009, 20555-0001. NRC Information Notice 2003-22, Supplement 1. Washington, DC: NRC; 2009. Available at www.nrc.gov/reading-rm/doc-collections/gen-comm/info-notices/2003/ml090500018.pdf. Accessed 10 Oct 2017.Google Scholar
  50. 50.
    American Thyroid Association Taskforce On Radioiodine Safety, Sisson JC, Freitas J, McDougall IR, Dauer LT, Hurley JR, et al. Radiation safety in the treatment of patients with thyroid diseases by radioiodine 131I : practice recommendations of the American Thyroid Association. Thyroid. 2011;21:335–46.CrossRefGoogle Scholar
  51. 51.
    U.S. Nuclear Regulatory Commission Regulatory Guide 8.39. Release of patients administered radioactive materials. 1997. Available at www.nucmed.com/nucmed/ref/8_39.pdf. Accessed 10 Oct 2017.
  52. 52.
    United States Nuclear Regulatory Commission 2008 Standards for protection against radiation. Title 10, Code of Federal Regulations: Part 20, Subpart C—20.1201 Occupational dose limits for adults; 20.1207 Occupational dose limits for minors; Part 35, Subpart C—35.75 Release of individuals containing unsealed byproduct material or implants containing byproduct material. Available at www.nrc.gov/reading-rm/doc-collections/cfr. Accessed 10 Oct 2017.
  53. 53.
    Nĕmec J, Röhling S, Zamrazil V, Pohunková D. Comparison of the distribution of diagnostic and thyroablative I-131 in the evaluation of differentiated thyroid cancers. J Nucl Med. 1979;20:92–7.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Waxman A, Ramanna L, Chapman N, Chapman D, Brachman M, Tanasescu D, et al. The significance of 1-131 scan dose in patients with thyroid cancer: determination of ablation: concise communication. J Nucl Med. 1981;22:861–5.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Ciappuccini R, Heutte N, Trzepla G, Rame J-P, Vaur D, Aide N, et al. Postablation (131)I scintigraphy with neck and thorax SPECT-CT and stimulated serum thyroglobulin level predict the outcome of patients with differentiated thyroid cancer. Eur J Endocrinol. 2011;164:961–9.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Goolden AW, Kam KC, Fitzpatrick ML, Munro AJ. Oedema of the neck after ablation of the thyroid with radioactive iodine. Br J Radiol. 1986;59:583–6.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Kloos RT, Duvuuri V, Jhiang SM, Cahill KV, Foster JA, Burns JA. Nasolacrimal drainage system obstruction from radioactive iodine therapy for thyroid carcinoma. J Clin Endocrinol Metab. 2002;87:5817–20.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Dottorini ME. Genetic risk assessment after iodine-131 exposure: an opportunity and obligation for nuclear medicine. J Nucl Med. 1996;37:612–5.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Klubo-Gwiezdzinska J, Van Nostrand D, Burman KD, Vasko V, Chia S, Deng T, et al. Salivary gland malignancy and radioiodine therapy for thyroid cancer. Thyroid. 2010;20:647–51.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Lee SL. Complications of radioactive iodine treatment of thyroid carcinoma. J Natl Compr Cancer Netw. 2010;8:1277–86. quiz 1287.CrossRefGoogle Scholar
  61. 61.
    Verburg FA, Hänscheid H, Biko J, Hategan MC, Lassmann M, Kreissl MC, et al. Dosimetry-guided high-activity (131)I therapy in patients with advanced differentiated thyroid carcinoma: initial experience. Eur J Nucl Med Mol Imaging. 2010;37:896–903.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Van Nostrand D, Freitas J. Side effects of I-131 for ablation and treatment of Well- differentiated thyroid carcinoma. In: Wartofsky L, Van Nostrand D, editors. Thyroid Cancer: A Comprehensive Guide to Clinical Management. Totowa, NJ: Humana Press; 2006. p. 459–84.CrossRefGoogle Scholar
  63. 63.
    Van Nostrand D, Neutze J, Atkins F. Side effects of “rational dose” iodine-131 therapy for metastatic well-differentiated thyroid carcinoma. J Nucl Med. 1986;27:1519–27.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Sawka AM, Lakra DC, Lea J, Alshehri B, Tsang RW, Brierley JD, et al. A systematic review examining the effects of therapeutic radioactive iodine on ovarian function and future pregnancy in female thyroid cancer survivors. Clin Endocrinol (Oxf). 2008;69:479–90.CrossRefGoogle Scholar
  65. 65.
    Sawka AM, Lea J, Alshehri B, Straus S, Tsang RW, Brierley JD, et al. A systematic review of the gonadal effects of therapeutic radioactive iodine in male thyroid cancer survivors. Clin Endocrinol (Oxf). 2008;68:610–7.CrossRefGoogle Scholar
  66. 66.
    Garsi J-P, Schlumberger M, Rubino C, Ricard M, Labbé M, Ceccarelli C, et al. Therapeutic administration of 131I for differentiated thyroid cancer: radiation dose to ovaries and outcome of pregnancies. J Nucl Med. 2008;49:845–52.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Dottorini ME, Lomuscio G, Mazzucchelli L, Vignati A, Colombo L. Assessment of female fertility and carcinogenesis after iodine-131 therapy for differentiated thyroid carcinoma. J Nucl Med. 1995;36:21–7.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Vini L, Hyer S, Al-Saadi A, Pratt B, Harmer C. Prognosis for fertility and ovarian function after treatment with radioiodine for thyroid cancer. Postgrad Med J. 2002;78:92–3.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Rosário PWS, Barroso AL, Rezende LL, Padrão EL, Borges MAR, Guimarães VC, et al. Testicular function after radioiodine therapy in patients with thyroid cancer. Thyroid. 2006;16:667–70.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Wallace WHB. Oncofertility and preservation of reproductive capacity in children and young adults. Cancer. 2011;117:2301–10.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Baugnet-Mahieu L, Lemaire M, Léonard ED, Léonard A, Gerber GB. Chromosome aberrations after treatment with radioactive iodine for thyroid cancer. Radiat Res. 1994;140:429–31.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Puerto S, Marcos R, Ramírez MJ, Galofré P, Creus A, Surrallés J. Equal induction and persistence of chromosome aberrations involving chromosomes 1, 4 and 10 in thyroid cancer patients treated with radioactive iodine. Mutat Res. 2000;469:147–58.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Richter HE, Lohrer HD, Hieber L, Kellerer AM, Lengfelder E, Bauchinger M. Microsatellite instability and loss of heterozygosity in radiation-associated thyroid carcinomas of Belarussian children and adults. Carcinogenesis. 1999;20:2247–52.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Sawka AM, Thabane L, Parlea L, Ibrahim-Zada I, Tsang RW, Brierley JD, et al. Second primary malignancy risk after radioactive iodine treatment for thyroid cancer: a systematic review and meta-analysis. Thyroid. 2009;19:451–7.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Rall JE, Alpers JB, Lewallen CG, Sonenberg M, Berman M, Rawson RW. Radiation pneumonitis and fibrosis: a complication of radioiodine treatment of pulmonary metastases from cancer of the thyroid. J Clin Endocrinol Metab. 1957;17:1263–76.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Van Nostrand D, Atkins F, Yeganeh F, Acio E, Bursaw R, Wartofsky L. Dosimetrically determined doses of radioiodine for the treatment of metastatic thyroid carcinoma. Thyroid. 2002;12:121–34.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Kaatsch P. Epidemiology of childhood cancer. Cancer Treat Rev. 2010;36:277–85.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Maris JM, Hogarty MD, Bagatell R, Cohn SL. Neuroblastoma. Lancet. 2007;369:2106–20.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Park JR, Eggert A, Caron H. Neuroblastoma: biology, prognosis, and treatment. Pediatr Clin North Am. 2008;55:97–120. x.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Sharp SE, Gelfand MJ, Shulkin BL. Pediatrics: diagnosis of neuroblastoma. Semin Nucl Med. 2011;41:345–53.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Brisse HJ, McCarville MB, Granata C, Krug KB, Wootton-Gorges SL, Kanegawa K, et al. Guidelines for imaging and staging of neuroblastic tumors: consensus report from the International Neuroblastoma Risk Group Project. Radiology. 2011;261:243–57.PubMedCrossRefGoogle Scholar
  82. 82.
    Cohn SL, Pearson ADJ, London WB, Monclair T, Ambros PF, Brodeur GM, et al. The International Neuroblastoma Risk Group (INRG) classification system: an INRG Task Force report. J Clin Oncol. 2009;27:289–97.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    DuBois SG, Kalika Y, Lukens JN, Brodeur GM, Seeger RC, Atkinson JB, et al. Metastatic sites in stage IV and IVS neuroblastoma correlate with age, tumor biology, and survival. J Pediatr Hematol Oncol. 1999;21:181–9.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Brodeur GM, Seeger RC, Barrett A, Berthold F, Castleberry RP, D’Angio G, et al. International criteria for diagnosis, staging, and response to treatment in patients with neuroblastoma. J Clin Oncol. 1988;6:1874–81.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Brodeur GM, Pritchard J, Berthold F, Carlsen NL, Castel V, Castelberry RP, et al. Revisions of the international criteria for neuroblastoma diagnosis, staging, and response to treatment. J Clin Oncol. 1993;11:1466–77.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Monclair T, Brodeur GM, Ambros PF, Brisse HJ, Cecchetto G, Holmes K, et al. The International Neuroblastoma Risk Group (INRG) staging system: an INRG Task Force report. J Clin Oncol. 2009;27:298–303.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Yu AL, Gilman AL, Ozkaynak MF, London WB, Kreissman SG, Chen HX, et al. Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N Engl J Med. 2010;363:1324–34.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Matthay KK, Villablanca JG, Seeger RC, Stram DO, Harris RE, Ramsay NK, et al. Treatment of high-risk neuroblastoma with intensive chemotherapy, radiotherapy, autologous bone marrow transplantation, and 13-cis-retinoic acid. Children’s Cancer Group. N Engl J Med. 1999;341:1165–73.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Vik TA, Pfluger T, Kadota R, Castel V, Tulchinsky M, Farto JCA, et al. (123)I-mIBG scintigraphy in patients with known or suspected neuroblastoma: results from a prospective multicenter trial. Pediatr. Blood Cancer. 2009;52:784–90.CrossRefGoogle Scholar
  90. 90.
    Wieland DM, Wu J, Brown LE, Mangner TJ, Swanson DP, Beierwaltes WH. Radiolabeled adrenergi neuron-blocking agents: adrenomedullary imaging with [131I]iodobenzylguanidine. J Nucl Med. 1980;21:349–53.PubMedPubMedCentralGoogle Scholar
  91. 91.
    Wieland DM, Brown LE, Tobes MC, Rogers WL, Marsh DD, Mangner TJ, et al. Imaging the primate adrenal medulla with [123I] and [131I] meta-iodobenzylguanidine: concise communication. J Nucl Med. 1981;22:358–64.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Sisson J, Shapiro B, Beierwaltes WH, Nakajo M, Glowniak J, Mangner T, et al. Treatment of malignant pheochromocytoma with a new radiopharmaceutical. Trans Assoc Am Physicians. 1983;96:209–17.PubMedPubMedCentralGoogle Scholar
  93. 93.
    Treuner J, Klingebiel T, Feine U, Buck J, Bruchelt G, Dopfer R, et al. Clinical experiences in the treatment of neuroblastoma with 131I-metaiodobenzylguanidine. Pediatr Hematol Oncol. 1986;3:205–16.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Buck J, Bruchelt G, Girgert R, Treuner J, Niethammer D. Specific uptake of m-[125I]iodobenzylguanidine in the human neuroblastoma cell line SK-N-SH. Cancer Res. 1985;45:6366–70.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Jaques S, Tobes MC, Sisson JC, Baker JA, Wieland DM. Comparison of the sodium dependency of uptake of meta-lodobenzylguanidine and norepinephrine into cultured bovine adrenomedullary cells. Mol Pharmacol. 1984;26:539–46.PubMedPubMedCentralGoogle Scholar
  96. 96.
    Jaques S, Tobes MC, Sisson JC. Sodium dependency of uptake of norepinephrine and m-iodobenzylguanidine into cultured human pheochromocytoma cells: evidence for uptake-one. Cancer Res. 1987;47:3920–8.PubMedPubMedCentralGoogle Scholar
  97. 97.
    Tobes MC, Jaques S, Wieland DM, Sisson JC. Effect of uptake-one inhibitors on the uptake of norepinephrine and metaiodobenzylguanidine. J Nucl Med. 1985;26:897–907.PubMedPubMedCentralGoogle Scholar
  98. 98.
    Smets LA, Loesberg C, Janssen M, Metwally EA, Huiskamp R. Active uptake and extravesicular storage of m-iodobenzylguanidine in human neuroblastoma SK-N-SH cells. Cancer Res. 1989;49:2941–4.PubMedPubMedCentralGoogle Scholar
  99. 99.
    Gaze MN, Huxham IM, Mairs RJ, Barrett A. Intracellular localization of metaiodobenzyl guanidine in human neuroblastoma cells by electron spectroscopic imaging. Int J Cancer. 1991;47:875–80.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Lashford LS, Hancock JP, Kemshead JT. Meta-iodobenzylguanidine (mIBG) uptake and storage in the human neuroblastoma cell line SK-N-BE(2C). Int J Cancer. 1991;47:105–9.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Wilson JS, Gains JE, Moroz V, Wheatley K, Gaze MN. A systematic review of 131I-meta iodobenzylguanidine molecular radiotherapy for neuroblastoma. Eur J Cancer. 2014;50:801–15.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Claudiani F, Garaventa A, Bertolazzi L, Villavecchia GP, Cabria M, Scopinaro G, et al. [131I]metaiodobenzylguanidine therapy in advanced neuroblastoma. J Nucl Biol Med. 1991;35:224–7.PubMedPubMedCentralGoogle Scholar
  103. 103.
    DuBois SG, Messina J, Maris JM, Huberty J, Glidden DV, Veatch J, et al. Hematologic toxicity of high-dose iodine-131-metaiodobenzylguanidine therapy for advanced neuroblastoma. J Clin Oncol. 2004;22:2452–60.PubMedCrossRefGoogle Scholar
  104. 104.
    Garaventa A, Bellagamba O, Lo Piccolo MS, Milanaccio C, Lanino E, Bertolazzi L, et al. 131I-metaiodobenzylguanidine (131I-MIBG) therapy for residual neuroblastoma: a mono-institutional experience with 43 patients. Br J Cancer. 1999;81:1378–84.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Hutchinson RJ, Sisson JC, Miser JS, Zasadny KR, Normolle DP, Shulkin BL, et al. Long-term results of [131I]metaiodobenzylguanidine treatment of refractory advanced neuroblastoma. J Nucl Biol Med. 1991;35:237–40.PubMedPubMedCentralGoogle Scholar
  106. 106.
    Hutchinson RJ, Sisson JC, Shapiro B, Miser JS, Normole D, Shulkin BL, et al. 131-I-metaiodobenzylguanidine treatment in patients with refractory advanced neuroblastoma. Am J Clin Oncol. 1992;15:226–32.PubMedCrossRefGoogle Scholar
  107. 107.
    Hoefnagel CA, Voûte PA, De Kraker J, Valdés Olmos RA. [131I]metaiodobenzylguanidine therapy after conventional therapy for neuroblastoma. J Nucl Biol Med. 1991;35:202–6.PubMedGoogle Scholar
  108. 108.
    Kang TI, Brophy P, Hickeson M, Heyman S, Evans AE, Charron M, et al. Targeted radiotherapy with submyeloablative doses of 131I-MIBG is effective for disease palliation in highly refractory neuroblastoma. J Pediatr Hematol Oncol. 2003;25:769–73.PubMedCrossRefGoogle Scholar
  109. 109.
    Klingebiel T, Feine U, Treuner J, Reuland P, Handgretinger R, Niethammer D. Treatment of neuroblastoma with [131I]metaiodobenzylguanidine: long-term results in 25 patients. J Nucl Biol Med. 1991;35:216–9.PubMedPubMedCentralGoogle Scholar
  110. 110.
    Lashford LS, Lewis IJ, Fielding SL, Flower MA, Meller S, Kemshead JT, et al. Phase I/II study of iodine 131 metaiodobenzylguanidine in chemoresistant neuroblastoma: a United Kingdom Children’s Cancer Study Group investigation. J Clin Oncol. 1992;10:1889–96.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Lumbroso J, Hartmann O, Schlumberger M. Therapeutic use of [131I]metaiodobenzylguanidine in neuroblastoma: a phase II study in 26 patients. “Société Française d’Oncologie Pédiatrique” and Nuclear Medicine Co-investigators. J Nucl Biol Med. 1991;35:220–3.PubMedPubMedCentralGoogle Scholar
  112. 112.
    Matthay KK, Huberty JP, Hattner RS, Ablin AR, Engelstad BL, Zoger S, et al. Efficacy and safety of [131I]metaiodobenzylguanidine therapy for patients with refractory neuroblastoma. J Nucl Biol Med. 1991;35:244–7.PubMedPubMedCentralGoogle Scholar
  113. 113.
    Troncone L, Rufini V, Riccardi R, Lasorella A, Mastrangelo R. The use of [131I]metaiodobenzylguanidine in the treatment of neuroblastoma after conventional therapy. J Nucl Biol Med. 1991;35:232–6.PubMedPubMedCentralGoogle Scholar
  114. 114.
    Matthay KK, Yanik G, Messina J, Quach A, Huberty J, Cheng S-C, et al. Phase II study on the effect of disease sites, age, and prior therapy on response to iodine-131-metaiodobenzylguanidine therapy in refractory neuroblastoma. J Clin Oncol. 2007;25:1054–60.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Howard JP, Maris JM, Kersun LS, Huberty JP, Cheng S-C, Hawkins RA, et al. Tumor response and toxicity with multiple infusions of high dose 131I-MIBG for refractory neuroblastoma. Pediatr Blood Cancer. 2005;44:232–9.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Johnson K, McGlynn B, Saggio J, Baniewicz D, Zhuang H, Maris JM, et al. Safety and efficacy of tandem 131I-metaiodobenzylguanidine infusions in relapsed/refractory neuroblastoma. Pediatr Blood Cancer. 2011;57:1124–9.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Matthay KK, Quach A, Huberty J, Franc BL, Hawkins RA, Jackson H, et al. Iodine-131--metaiodobenzylguanidine double infusion with autologous stem-cell rescue for neuroblastoma: a new approaches to neuroblastoma therapy phase I study. J Clin Oncol. 2009;27:1020–5.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Yanik GA, Villablanca JG, Maris JM, Weiss B, Groshen S, Marachelian A, et al. 131I-metaiodobenzylguanidine with intensive chemotherapy and autologous stem cell transplantation for high-risk neuroblastoma. A new approaches to neuroblastoma therapy (NANT) phase II study. Biol. Blood Marrow Transplant. J. Am. Soc. Blood Marrow Transpl. 2015;21:673–81.CrossRefGoogle Scholar
  119. 119.
    Klingebiel T, Bader P, Bares R, Beck J, Hero B, Jürgens H, et al. Treatment of neuroblastoma stage 4 with 131I-meta-iodo-benzylguanidine, high-dose chemotherapy and immunotherapy. A pilot study. Eur J Cancer. 1998;34:1398–402.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Parisi MT, Eslamy H, Park JR, Shulkin BL, Yanik GA. 131I-Metaiodobenzylguanidine theranostics in neuroblastoma: historical perspectives; practical applications. Semin Nucl Med. 2016;46:184–202.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Streby KA, Shah N, Ranalli MA, Kunkler A, Cripe TP. Nothing but NET: a review of norepinephrine transporter expression and efficacy of 131I-mIBG therapy. Pediatr Blood Cancer. 2015;62:5–11.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    De Kraker J, Hoefnagel CA, Caron H, Valdés Olmos RA, Zsiros J, Heij HA, et al. First line targeted radiotherapy, a new concept in the treatment of advanced stage neuroblastoma. Eur J Cancer. 1995;31A:600–2.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Mastrangelo S, Rufini V, Ruggiero A, Di Giannatale A, Riccardi R. Treatment of advanced neuroblastoma in children over 1 year of age: the critical role of 131I-metaiodobenzylguanidine combined with chemotherapy in a rapid induction regimen. Pediatr Blood Cancer. 2011;56:1032–40.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    de Kraker J, Hoefnagel KA, Verschuur AC, van Eck B, van Santen HM, Caron HN. Iodine-131-metaiodobenzylguanidine as initial induction therapy in stage 4 neuroblastoma patients over 1 year of age. Eur J Cancer. 2008;44:551–6.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Hoefnagel CA, De Kraker J, Valdés Olmos RA, Voûte PA. 131I-MIBG as a first-line treatment in high-risk neuroblastoma patients. Nucl Med Commun. 1994;15:712–7.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Kraal KCJM, Bleeker GM, van Eck-Smit BLF, van Eijkelenburg NKA, Berthold F, van Noesel MM, et al. Feasibility, toxicity and response of upfront metaiodobenzylguanidine therapy therapy followed by German Pediatric Oncology Group Neuroblastoma 2004 protocol in newly diagnosed stage 4 neuroblastoma patients. Eur J Cancer. 2017;76:188–96.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    DuBois SG, Matthay KK. Radiolabeled metaiodobenzylguanidine for the treatment of neuroblastoma. Nucl Med Biol. 2008;35(Suppl 1):S35–48.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Grünwald F, Ezziddin S. 131I-metaiodobenzylguanidine therapy of neuroblastoma and other neuroendocrine tumors. Semin Nucl Med. 2010;40:153–63.PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Sharp SE, Trout AT, Weiss BD, Gelfand MJ. MIBG in neuroblastoma diagnostic imaging and therapy. Radiogr Rev. 2016;36:258–78.Google Scholar
  130. 130.
    Shusterman S, Grant FD, Lorenzen W, Davis RT, Laffin S, Drubach LA, et al. Iodine-131-labeled meta-iodobenzylguanidine therapy of children with neuroblastoma: program planning and initial experience. Semin Nucl Med. 2011;41:354–63.PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Taggart D, Dubois S, Matthay KK. Radiolabeled metaiodobenzylguanidine for imaging and therapy of neuroblastoma. Q J Nucl Med Mol Imaging. 2008;52:403–18.PubMedPubMedCentralGoogle Scholar
  132. 132.
    Giammarile F, Lumbroso J, Ricard M, Aubert B, Hartmann O, Schlumberger M, et al. Radioiodinated metaiodobenzylguanidine in neuroblastoma: influence of high dose on tumour site detection. Eur J Nucl Med. 1995;22:1180–3.PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Hickeson MP, Charron M, Maris JM, Brophy P, Kang TI, Zhuang H, et al. Biodistribution of post-therapeutic versus diagnostic (131)I-MIBG scans in children with neuroblastoma. Pediatr Blood Cancer. 2004;42:268–74.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Parisi MT, Matthay KK, Huberty JP, Hattner RS. Neuroblastoma: dose-related sensitivity of MIBG scanning in detection. Radiology. 1992;184:463–7.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Markelewicz RJ, Lorenzen WA, Shusterman S, Grant FD, Fahey FH, Treves ST. Radiation exposure to family caregivers and nurses of pediatric neuroblastoma patients receiving 131I-metaiodobenzylguanidine (131I-MIBG) therapy. Clin Nucl Med. 2013;38:604–7.PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Wong T, Matthay KK, Boscardin WJ, Hawkins RA, Brakeman PR, DuBois SG. Acute changes in blood pressure in patients with neuroblastoma treated with 131I-metaiodobenzylguanidine (MIBG). Pediatr Blood Cancer. 2013;60:1424–30.PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Polishchuk AL, Dubois SG, Haas-Kogan D, Hawkins R, Matthay KK. Response, survival, and toxicity after iodine-131-metaiodobenzylguanidine therapy for neuroblastoma in preadolescents, adolescents, and adults. Cancer. 2011;117:4286–93.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Clement SC, Van Eck-Smit BLF, Van Trotsenburg ASP, Kremer LCM, Tytgat GAM, Van Santen HM. Long-term follow-up of the thyroid gland after treatment with 131I-Metaiodobenzylguanidine in children with neuroblastoma: importance of continuous surveillance. Pediatr Blood Cancer. 2013;60:1833–8.PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Weiss B, Vora A, Huberty J, Hawkins RA, Matthay KK. Secondary myelodysplastic syndrome and leukemia following 131I-metaiodobenzylguanidine therapy for relapsed neuroblastoma. J Pediatr Hematol Oncol. 2003;25:543–7.PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Garaventa A, Gambini C, Villavecchia G, Di Cataldo A, Bertolazzi L, Pizzitola MR, et al. Second malignancies in children with neuroblastoma after combined treatment with 131I-metaiodobenzylguanidine. Cancer. 2003;97:1332–8.PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Albers AR, O’Dorisio MS, Balster DA, Caprara M, Gosh P, Chen F, et al. Somatostatin receptor gene expression in neuroblastoma. Regul Pept. 2000;88:61–73.PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Frühwald MC, O’Dorisio MS, Pietsch T, Reubi JC. High expression of somatostatin receptor subtype 2 (sst2) in medulloblastoma: implications for diagnosis and therapy. Pediatr Res. 1999;45:697–708.PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Menda Y, O’Dorisio MS, Kao S, Khanna G, Michael S, Connolly M, et al. Phase I trial of 90Y-DOTATOC therapy in children and young adults with refractory solid tumors that express somatostatin receptors. J Nucl Med. 2010;51:1524–31.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Gains JE, Bomanji JB, Fersht NL, Sullivan T, D’Souza D, Sullivan KP, et al. 177Lu-DOTATATE molecular radiotherapy for childhood neuroblastoma. J Nucl Med. 2011;52:1041–7.PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Kong G, Hofman MS, Murray WK, Wilson S, Wood P, Downie P, et al. Initial experience with gallium-68 DOTA-octreotate PET/CT and peptide receptor radionuclide therapy for pediatric patients with refractory metastatic neuroblastoma. J Pediatr Hematol Oncol. 2016;38:87–96.PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Modak S, Cheung N-KV. Antibody-based targeted radiation to pediatric tumors. J Nucl Med. 2005;46(Suppl 1):157S–63S.PubMedPubMedCentralGoogle Scholar
  147. 147.
    Cheung NK. Monoclonal antibody-based therapy for neuroblastoma. Curr Oncol Rep. 2000;2:547–53.PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Cheung NK, Kushner BH, LaQuaglia M, Kramer K, Gollamudi S, Heller G, et al. N7: a novel multi-modality therapy of high risk neuroblastoma (NB) in children diagnosed over 1 year of age. Med Pediatr Oncol. 2001;36:227–30.PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Mikles B, Levine J, Gindin T, Bhagat G, Satwani P. Brentuximab vedotin (SGN-35) in a 3-year-old child with relapsed systemic anaplastic large cell lymphoma. J Pediatr Hematol Oncol. 2014;36:e85–7.PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Neville KA, Rosolen A, Landman-Parker J, Aladjidi N, Beishuizen A, Daw S, et al. Phase 1/2 study of brentuximab vedotin in pediatric patients with relapsed or refractory (R/R) hodgkin lymphoma (HL) or systemic anaplastic large-cell lymphoma (sALCL): preliminary phase 2 data for brentuximab vedotin 1.8 Mg/Kg in the HL study arm. Blood. 2013;122:4378.Google Scholar
  151. 151.
    Neville K, Gore L, Mauz-Körholz C, Rosolen A, Landman-Parker J, Sanchez de Toledo J, et al. Phase I/II study of brentuximab vedotin in pediatric patients (pts) with relapsed or refractory (RR) Hodgkin lymphoma (HL) or systemic anaplastic large-cell lymphoma (sALCL): interim phase (ph) I safety data. J Clin Oncol. 2013;31:10028.Google Scholar
  152. 152.
    Sorge CE, McDaniel JK, Xavier AC. Targeted therapies for the treatment of pediatric non-hodgkin lymphomas: present and future. Pharmaceuticals (Basel) 2016;9(2).Google Scholar
  153. 153.
    Pizer BL, Kemshead JT. The potential of targeted radiotherapy in the treatment of central nervous system leukaemia. Leuk Lymphoma. 1994;15:281–9.PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    Pizer B, Papanastassiou V, Hancock J, Cassano W, Coakham H, Kemshead J. A pilot study of monoclonal antibody targeted radiotherapy in the treatment of central nervous system leukaemia in children. Br J Haematol. 1991;77:466–72.PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Baiu DC, Marsh IR, Boruch AE, Shahi A, Bhattacharya S, Jeffery JJ, et al. Targeted molecular radiotherapy of pediatric solid tumors using a radioiodinated alkyl-phospholipid ether analog. J Nucl Med. 2018;59:244.  https://doi.org/10.2967/jnumed.117.193748.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Neha S. Kwatra
    • 1
    Email author
  • Marguerite T. Parisi
    • 2
  • Barry L. Shulkin
    • 3
  1. 1.Department of RadiologyBoston Children’s HospitalBostonUSA
  2. 2.Department of RadiologyUniversity of Washington School of Medicine and Seattle Children’s HospitalSeattleUSA
  3. 3.Department of Diagnostic ImagingSt. Jude Children’s Research HospitalMemphisUSA

Personalised recommendations