MIP-Based Sensor for CTx-I Detection

  • Nasrin AfsarimaneshEmail author
  • Subhas Chandra Mukhopadhyay
  • Marlena Kruger
Part of the Smart Sensors, Measurement and Instrumentation book series (SSMI, volume 30)


Explains the detailed procedure of creating artificial antibodies using Molecular Imprinted Polymers (MIPs). A novel sensing technique for the recognition of CTx-I by combining electrochemical impedance spectroscopy and MIP technology is also explained in this chapter. Moreover, the role of the coating thickness on the sensitivity of the planar interdigital sensors is investigated.


  1. 1.
    Bolisay LD, Culver JN, Kofinas P (2006) Molecularly imprinted polymers for tobacco mosaic virus recognition. Biomaterials 27(22):4165–4168CrossRefGoogle Scholar
  2. 2.
    Trotta F, Drioli E, Baggiani C, Lacopo D (2002) Molecular imprinted polymeric membrane for naringin recognition. J Membr Sci 201(1):77–84CrossRefGoogle Scholar
  3. 3.
    Odabaşi M, Say R, Denizli A (2007) Molecular imprinted particles for lysozyme purification. Mater Sci Eng C 27(1):90–99CrossRefGoogle Scholar
  4. 4.
    Huo H, Su H, Tan T (2009) Adsorption of Ag+ by a surface molecular-imprinted biosorbent. Chem Eng J 150(1):139–144CrossRefGoogle Scholar
  5. 5.
    Sellergren B (1994) Direct drug determination by selective sample enrichment on an imprinted polymer. Anal Chem 66(9):1578–1582CrossRefGoogle Scholar
  6. 6.
    Ye L, Haupt K (2004) Molecularly imprinted polymers as antibody and receptor mimics for assays, sensors and drug discovery. Anal Bioanal Chem 378(8):1887–1897CrossRefGoogle Scholar
  7. 7.
    Vlatakis G, Andersson LI, Müller R, Mosbach K (1993) Drug assay using antibody mimics made by molecular imprinting. Nature 361(6413):645CrossRefGoogle Scholar
  8. 8.
    Takeuchi T, Mukawa T, Matsui J, Higashi M, Shimizu KD (2001) Molecularly imprinted polymers with metalloporphyrin-based molecular recognition sites coassembled with methacrylic acid. Anal Chem 73(16):3869–3874CrossRefGoogle Scholar
  9. 9.
    Vallano PT, Remcho VT (2000) Affinity screening by packed capillary high-performance liquid chromatography using molecular imprinted sorbents: I. Demonstration of feasibility. J Chromatogr A 888(1):23–34CrossRefGoogle Scholar
  10. 10.
    Li Y, Ma Q, Liu Z, Wang X, Su X (2014) A novel enzyme-mimic nanosensor based on quantum dot-Au nanoparticle@ silica mesoporous microsphere for the detection of glucose. Anal Chim Acta 840:68–74CrossRefGoogle Scholar
  11. 11.
    Ersöz A, Gavalas VG, Bachas LG (2002) Potentiometric behavior of electrodes based on overoxidized polypyrrole films. Anal Bioanal Chem 372(7–8):786–790CrossRefGoogle Scholar
  12. 12.
    Hedborg E, Winquist F, Lundström I, Andersson LI, Mosbach K (1993) Some studies of molecularly-imprinted polymer membranes in combination with field-effect devices. Sens Actuators A 37:796–799CrossRefGoogle Scholar
  13. 13.
    áL Panasyuk T, áM Sergeeva L (1999) Conductimetric sensor for atrazine detection based on molecularly imprinted polymer membranes. Analyst 124(3):331–334CrossRefGoogle Scholar
  14. 14.
    Malitesta C, Losito I, Zambonin PG (1999) Molecularly imprinted electrosynthesized polymers: new materials for biomimetic sensors. Anal Chem 71(7):1366–1370CrossRefGoogle Scholar
  15. 15.
    Andrea P, Stanislav M (2001) A solid binding matrix/molecularly imprinted polymer-based sensor system for the determination of clenbuterol in bovine liver using differential-pulse voltammetry. Sens Actuators B Chem 76(1):286–294CrossRefGoogle Scholar
  16. 16.
    Cheng Z, Wang E, Yang X (2001) Capacitive detection of glucose using molecularly imprinted polymers. Biosens Bioelectron 16(3):179–185CrossRefGoogle Scholar
  17. 17.
    Yin J, Yang G, Chen Y (2005) Rapid and efficient chiral separation of nateglinide and its l-enantiomer on monolithic molecularly imprinted polymers. J Chromatogr A 1090(1):68–75CrossRefGoogle Scholar
  18. 18.
    Yan H, Row KH (2006) Characteristic and synthetic approach of molecularly imprinted polymer. Int J Mol Sci 7(5):155–178CrossRefGoogle Scholar
  19. 19.
    Owens PK, Karlsson L, Lutz E, Andersson LI (1999) Molecular imprinting for bio-and pharmaceutical analysis. TrAC Trends Anal Chem 18(3):146–154CrossRefGoogle Scholar
  20. 20.
    Kempe M, Mosbach K (1995) Receptor binding mimetics: a novel molecularly imprinted polymer. Tetrahedron Lett 36(20):3563–3566CrossRefGoogle Scholar
  21. 21.
    Rimmer S (1998) Synthesis of molecular imprinted polymer networks. Chromatographia 47(7–8):470–474CrossRefGoogle Scholar
  22. 22.
    Zia AI, Mukhopadhyay SC, Yu P-L, Al-Bahadly I, Gooneratne CP, Kosel J (2015) Rapid and molecular selective electrochemical sensing of phthalates in aqueous solution. Biosens Bioelectron 67:342–349CrossRefGoogle Scholar
  23. 23.
    Hirayama K, Sakai Y, Kameoka K, Noda K, Naganawa R (2002) Preparation of a sensor device with specific recognition sites for acetaldehyde by molecular imprinting technique. Sens Actuators B Chem 86(1):20–25CrossRefGoogle Scholar
  24. 24.
    Dickert F, Lieberzeit P, Tortschanoff M (2000) Molecular imprints as artificial antibodies—a new generation of chemical sensors. Sens Actuators B Chem 65(1):186–189CrossRefGoogle Scholar
  25. 25.
    Sharma PS, D’Souza F, Kutner W (2012) Molecular imprinting for selective chemical sensing of hazardous compounds and drugs of abuse. TrAC Trends Anal Chem 34:59–77CrossRefGoogle Scholar
  26. 26.
    Chianella I, Lotierzo M, Piletsky SA, Tothill IE, Chen B, Karim K, Turner AP (2002) Rational design of a polymer specific for microcystin-LR using a computational approach. Anal Chem 74(6):1288–1293CrossRefGoogle Scholar
  27. 27.
    Ye L, Mosbach K (2001) Molecularly imprinted microspheres as antibody binding mimics. React Funct Polym 48(1):149–157CrossRefGoogle Scholar
  28. 28.
    Lavignac N, Allender CJ, Brain KR (2004) Current status of molecularly imprinted polymers as alternatives to antibodies in sorbent assays. Anal Chim Acta 510(2):139–145CrossRefGoogle Scholar
  29. 29.
    Liu F, Liu X, Ng S-C, Chan HS-O (2006) Enantioselective molecular imprinting polymer coated QCM for the recognition of l-tryptophan. Sens Actuators B Chem 113(1):234–240CrossRefGoogle Scholar
  30. 30.
    Spégel P, Schweitz L, Nilsson S (2003) Molecularly imprinted polymers in capillary electrochromatography: recent developments and future trends. Electrophoresis 24(22–23):3892–3899CrossRefGoogle Scholar
  31. 31.
    Ul-Haq N, Park JK (2008) Optical resolution of phenylalanine using D-Phe-imprinted poly (acrylic acid-co-acrylonitrile) membrane—racemate solution concentration effect. Polym Compos 29(9):1006–1013CrossRefGoogle Scholar
  32. 32.
    Ellwanger A, Berggren C, Bayoudh S, Crecenzi C, Karlsson L, Owens PK, Ensing K, Cormack P, Sherrington D, Sellergren B (2001) Evaluation of methods aimed at complete removal of template from molecularly imprinted polymers. Analyst 126(6):784–792CrossRefGoogle Scholar
  33. 33.
    Khan H, Park JK (2006) The preparation of D-phenylalanine imprinted microbeads by a novel method of modified suspension polymerization. Biotechnol Bioprocess Eng 11(6):503–509CrossRefGoogle Scholar
  34. 34.
    Hart BR, Rush DJ, Shea KJ (2000) Discrimination between enantiomers of structurally related molecules: separation of benzodiazepines by molecularly imprinted polymers. J Am Chem Soc 122(3):460–465CrossRefGoogle Scholar
  35. 35.
    Kugimiya A, Matsui J, Takeuchi T, Yano K, Muguruma H, Elgersma A, Karube I (1995) Recognition of sialic acid using molecularly imprinted polymer. Polym Plast Technol Eng 28(13):2317–2323CrossRefGoogle Scholar
  36. 36.
    Sarhan A, Wulff G (1982) On polymers with enzyme-analogous structure. 14. Stereospecific binding by amide bonding or electrostatic interaction. Makromol Chem Macromol Chem Phys 183(7):1603–1614Google Scholar
  37. 37.
    Andersson LI (2000) Molecular imprinting: developments and applications in the analytical chemistry field. J Chromatogr B Biomed Sci Appl 745(1):3–13MathSciNetCrossRefGoogle Scholar
  38. 38.
    Svenson J, Karlsson JG, Nicholls IA (2004) 1H nuclear magnetic resonance study of the molecular imprinting of (−)-nicotine: template self-association, a molecular basis for cooperative ligand binding. J Chromatogr A 1024(1):39–44CrossRefGoogle Scholar
  39. 39.
    Spivak DA (2005) Optimization, evaluation, and characterization of molecularly imprinted polymers. Adv Drug Deliv Rev 57(12):1779–1794CrossRefGoogle Scholar
  40. 40.
    Ekberg B, Mosbach K (1989) Molecular imprinting: a technique for producing specific separation materials. Trends Biotechnol 7(4):92–96CrossRefGoogle Scholar
  41. 41.
    Sellergren B (1989) Molecular imprinting by noncovalent interactions. Enantioselectivity and binding capacity of polymers prepared under conditions favoring the formation of template complexes. Die Makromol Chem 190(11):2703–2711Google Scholar
  42. 42.
    Kim H, Spivak DA (2003) New insight into modeling non-covalently imprinted polymers. J Am Chem Soc 125(37):11269–11275CrossRefGoogle Scholar
  43. 43.
    Esfandyari-Manesh M, Javanbakht M, Atyabi F, Badiei A, Dinarvand R (2011) Effect of porogenic solvent on the morphology, recognition and release properties of carbamazepine-molecularly imprinted polymer nanospheres. J Appl Polym Sci 121(2):1118–1126CrossRefGoogle Scholar
  44. 44.
    Wulff G, Sarhan A, Zabrocki K (1973) Enzyme-analogue built polymers and their use for the resolution of racemates. Tetrahedron Lett 14(44):4329–4332CrossRefGoogle Scholar
  45. 45.
    Li P, Rong F, Yuan C (2003) Morphologies and binding characteristics of molecularly imprinted polymers prepared by precipitation polymerization. Polym Int 52(12):1799–1806CrossRefGoogle Scholar
  46. 46.
    Wang J, Cormack PA, Sherrington DC, Khoshdel E (2003) Monodisperse, molecularly imprinted polymer microspheres prepared by precipitation polymerization for affinity separation applications. Angew Chem Int Ed 42(43):5336–5338CrossRefGoogle Scholar
  47. 47.
    Mayes AG, Mosbach K (1996) Molecularly imprinted polymer beads: suspension polymerization using a liquid perfluorocarbon as the dispersing phase. Anal Chem 68(21):3769–3774CrossRefGoogle Scholar
  48. 48.
    Shen X, Zhou T, Ye L (2012) Molecular imprinting of protein in pickering emulsion. Chem Commun 48(66):8198–8200CrossRefGoogle Scholar
  49. 49.
    Noh MW, Lee DC (1999) Synthesis and characterization of PS-clay nanocomposite by emulsion polymerization. Polym Bull 42(5):619–626CrossRefGoogle Scholar
  50. 50.
    Ersöz A, Denizli A, Özcan A, Say R (2005) Molecularly imprinted ligand-exchange recognition assay of glucose by quartz crystal microbalance. Biosens Bioelectron 20(11):2197–2202CrossRefGoogle Scholar
  51. 51.
    Wang C, Javadi A, Ghaffari M, Gong S (2010) A pH-sensitive molecularly imprinted nanospheres/hydrogel composite as a coating for implantable biosensors. Biomaterials 31(18):4944–4951CrossRefGoogle Scholar
  52. 52.
    Mamishev AV, Sundara-Rajan K, Fumin Y, Yanqing D, Zahn M (2004) Interdigital sensors and transducers. Proc IEEE 92(5):808–845. Scholar
  53. 53.
    Coan T, Barroso GS, Motz G, Bolzán A, Machado RAF (2013) Preparation of PMMA/hBN composite coatings for metal surface protection. Mater Res 16(6):1366–1372CrossRefGoogle Scholar
  54. 54.
    Wang H-C, Zyuzin A, Mamishev AV (2014) Measurement of coating thickness and loading using concentric fringing electric field sensors. IEEE Sens J 14(1):68–78CrossRefGoogle Scholar
  55. 55.
    Azmi A, Azman AA, Kaman KK, Ibrahim S, Mukhopadhyay SC, Nawawi SW, Yunus MAM (2017) Performance of coating materials on planar electromagnetic sensing array to detect water contamination. IEEE Sens J 17(16):5244–5251CrossRefGoogle Scholar
  56. 56.
    Snoeijer J, Ziegler J, Andreotti B, Fermigier M, Eggers J (2008) Thick films of viscous fluid coating a plate withdrawn from a liquid reservoir. Phys Rev Lett 100(24):244502CrossRefGoogle Scholar
  57. 57.
    Krishnan S, Weinman CJ, Ober CK (2008) Advances in polymers for anti-biofouling surfaces. J Mater Chem 18(29):3405–3413CrossRefGoogle Scholar
  58. 58.
    Nel AE, Mädler L, Velegol D, Xia T, Hoek EM, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano–bio interface. Nat Mater 8(7):543–557CrossRefGoogle Scholar
  59. 59.
    Yola ML, Eren T, Atar N (2015) A sensitive molecular imprinted electrochemical sensor based on gold nanoparticles decorated graphene oxide: application to selective determination of tyrosine in milk. Sens Actuators B Chem 210:149–157CrossRefGoogle Scholar
  60. 60.
    Aghaei A, Hosseini MRM, Najafi M (2010) A novel capacitive biosensor for cholesterol assay that uses an electropolymerized molecularly imprinted polymer. Electrochim Acta 55(5):1503–1508CrossRefGoogle Scholar
  61. 61.
    Viswanathan S, Rani C, Ribeiro S, Delerue-Matos C (2012) Molecular imprinted nanoelectrodes for ultra sensitive detection of ovarian cancer marker. Biosens Bioelectron 33(1):179–183CrossRefGoogle Scholar
  62. 62.
    Nebi M, Peker D (2016) Effect of heat treatment on the structural properties of TiO2 films produced by sol-gel spin coating technique. In: Journal of physics: conference series, vol 1. IOP Publishing, UK, p 012026Google Scholar
  63. 63.
    Ilican S (2016) Structural, optical and electrical properties of erbium-doped ZnO thin films prepared by spin coating method. J Nanoelectronics Optoelectron 11(4):465–471CrossRefGoogle Scholar
  64. 64.
    Wong M, Ishige R, White KL, Li P, Kim D, Krishnamoorti R, Gunther R, Higuchi T, Jinnai H, Takahara A (2014) Large-scale self-assembled zirconium phosphate smectic layers via a simple spray-coating process. Nat Commun 5:3589CrossRefGoogle Scholar
  65. 65.
    Guo Y, Li W, Yu H, Perepichka DF, Meng H (2017) Flexible asymmetric supercapacitors via spray coating of a new electrochromic donor–acceptor polymer. Adv Energy Mater 7(2):1601623CrossRefGoogle Scholar
  66. 66.
    Grosso D (2011) How to exploit the full potential of the dip-coating process to better control film formation. J Mater Chem 21(43):17033–17038CrossRefGoogle Scholar
  67. 67.
    Chaki SH, Deshpande M, Tailor JP (2014) Characterization of CuS nanocrystalline thin films synthesized by chemical bath deposition and dip coating techniques. Thin Solid Films 550:291–297CrossRefGoogle Scholar
  68. 68.
    Ashiri R, Nemati A, Ghamsari MS (2014) Crack-free nanostructured BaTiO3 thin films prepared by sol–gel dip-coating technique. Ceram Int 40(6):8613–8619CrossRefGoogle Scholar
  69. 69.
    Zhang X, Ye H, Xiao B, Yan L, Lv H, Jiang B (2010) Sol–gel preparation of PDMS/Silica hybrid antireflective coatings with controlled thickness and durable antireflective performance. J Phys Chem C 114(47):19979–19983CrossRefGoogle Scholar
  70. 70.
    Alexander C, Andersson HS, Andersson LI, Ansell RJ, Kirsch N, Nicholls IA, O’Mahony J, Whitcombe MJ (2006) Molecular imprinting science and technology: a survey of the literature for the years up to and including 2003. J Mol Recognit 19(2):106–180CrossRefGoogle Scholar
  71. 71.
    Bossi A, Bonini F, Turner A, Piletsky S (2007) Molecularly imprinted polymers for the recognition of proteins: the state of the art. Biosens Bioelectron 22(6):1131–1137CrossRefGoogle Scholar
  72. 72.
    Díaz-Díaz G, Antuña-Jiménez D, Carmen Blanco-López M, Jesús Lobo-Castañón M, Miranda-Ordieres AJ, Tuñón-Blanco P (2012) New materials for analytical biomimetic assays based on affinity and catalytic receptors prepared by molecular imprinting. TrAC Trends Anal Chem 33:68–80CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nasrin Afsarimanesh
    • 1
    Email author
  • Subhas Chandra Mukhopadhyay
    • 2
  • Marlena Kruger
    • 3
  1. 1.Department of EngineeringMacquarie UniversitySydneyAustralia
  2. 2.Department of EngineeringMacquarie UniversitySydneyAustralia
  3. 3.Institute of Food Science and TechnologyMassey UniversityPalmerston NorthNew Zealand

Personalised recommendations