Advertisement

Osteogenesis Imperfecta

  • Ruchita Patel
  • Pauline M. CamachoEmail author
Chapter

Abstract

Osteogenesis imperfecta is a rare inherited disorder that is the most common cause of osteoporosis in children. There are many types or categories of osteogenesis imperfecta, and each of these types has a distinct pattern of inheritance, genes or proteins involved, and differences in clinical manifestations. Mutations in the two genes coding for type I collagen are largely responsible for majority of cases of osteoporosis imperfecta. We present a clinical case of an adult patient with osteogenesis imperfecta and will subsequently discuss osteogenesis imperfecta classification, clinical manifestations, and treatment for metabolic bone abnormalities related to this disorder.

Keywords

Osteogenesis imperfecta Osteoporosis in childhood Type I collagen defect 

References

  1. 1.
    Stoll C, Dott B, Roth M-P, Alembik Y. Birth prevalence rates of skeletal dysplasias. Clin Genet. 2008;35(2):88–92.  https://doi.org/10.1111/j.1399-0004.1989.tb02912.x.CrossRefGoogle Scholar
  2. 2.
    Tournis S, Dede AD. Osteogenesis imperfecta – a clinical update. Metabolism. 2017;  https://doi.org/10.1016/j.metabol.2017.06.001.CrossRefGoogle Scholar
  3. 3.
    Harrington J, Sochett E, Howard A. Update on the evaluation and treatment of osteogenesis imperfecta. Pediatr Clin N Am. 2014;61(6):1243–57.  https://doi.org/10.1016/j.pcl.2014.08.010.CrossRefGoogle Scholar
  4. 4.
    Marini JC. Osteogenesis imperfecta. In: Primer on the metabolic bone diseases and disorders of mineral metabolism. Ames: Wiley; 2013. p. 822–9.  https://doi.org/10.1002/9781118453926.ch99.CrossRefGoogle Scholar
  5. 5.
    Palomo T, Vilaça T, Lazaretti-Castro M. Osteogenesis imperfecta. Curr Opin Endocrinol Diabetes Obes. 2017;24(6):381–8.  https://doi.org/10.1097/MED.0000000000000367.CrossRefPubMedGoogle Scholar
  6. 6.
    Rauch F, Moffatt P, Cheung M, et al. Osteogenesis imperfecta type V: marked phenotypic variability despite the presence of the IFITM5 c.−14C>T mutation in all patients. J Med Genet. 2013;50(1):21–4.  https://doi.org/10.1136/jmedgenet-2012-101307.CrossRefPubMedGoogle Scholar
  7. 7.
    Glorieux FH, Ward LM, Rauch F, Lalic L, Roughley PJ, Travers R. Osteogenesis imperfecta type VI: a form of brittle bone disease with a mineralization defect. J Bone Miner Res. 2002;17(1):30–8.  https://doi.org/10.1359/jbmr.2002.17.1.30.CrossRefPubMedGoogle Scholar
  8. 8.
    Ward LM, Rauch F, Travers R, et al. Osteogenesis imperfecta type VII: an autosomal recessive form of brittle bone disease. Bone. 2002;31(1):12–8. http://www.ncbi.nlm.nih.gov/pubmed/12110406. Accessed 1 July 2018CrossRefGoogle Scholar
  9. 9.
    Pyott SM, Schwarze U, Christiansen HE, et al. Mutations in PPIB (cyclophilin B) delay type I procollagen chain association and result in perinatal lethal to moderate osteogenesis imperfecta phenotypes. Hum Mol Genet. 2011;20(8):1595–609.  https://doi.org/10.1093/hmg/ddr037.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    van Dijk FS, Nesbitt IM, Zwikstra EH, et al. PPIB mutations cause severe osteogenesis imperfecta. Am J Hum Genet. 2009;85(4):521–7.  https://doi.org/10.1016/j.ajhg.2009.09.001.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Christiansen HE, Schwarze U, Pyott SM, et al. Homozygosity for a missense mutation in SERPINH1, which encodes the collagen chaperone protein HSP47, results in severe recessive osteogenesis imperfecta. Am J Hum Genet. 2010;86(3):389–98.  https://doi.org/10.1016/j.ajhg.2010.01.034.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Alanay Y, Avaygan H, Camacho N, et al. Mutations in the gene encoding the RER protein FKBP65 cause autosomal-recessive osteogenesis imperfecta. Am J Hum Genet. 2010;86(4):551–9.  https://doi.org/10.1016/j.ajhg.2010.02.022.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    McPherson E, Clemens M. Bruck syndrome (osteogenesis imperfecta with congenital joint contractures): review and report on the first North American case. Am J Med Genet. 1997;70(1):28–31. http://www.ncbi.nlm.nih.gov/pubmed/9129737. Accessed 5 July 2018CrossRefGoogle Scholar
  14. 14.
    Barnes AM, Duncan G, Weis M, et al. Kuskokwim syndrome, a recessive congenital contracture disorder, extends the phenotype of FKBP10 mutations. Hum Mutat. 2013;34(9):1279–88.  https://doi.org/10.1002/humu.22362.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Forlino A, Marini JC. Osteogenesis imperfecta. Lancet. 2016;387(10028):1657–71.  https://doi.org/10.1016/S0140-6736(15)00728-X.CrossRefPubMedGoogle Scholar
  16. 16.
    O’Connell AC, Marini JC. Evaluation of oral problems in an osteogenesis imperfecta population. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1999;87(2):189–96. http://www.ncbi.nlm.nih.gov/pubmed/10052375. Accessed 1 July 2018CrossRefGoogle Scholar
  17. 17.
    Rauch F, Travers R, Parfitt AM, Glorieux FH. Static and dynamic bone histomorphometry in children with osteogenesis imperfecta. Bone. 2000;26(6):581–9.  https://doi.org/10.1016/S8756-3282(00)00269-6.CrossRefPubMedGoogle Scholar
  18. 18.
    Arponen H, Mäkitie O, Waltimo-Sirén J. Association between joint hypermobility, scoliosis, and cranial base anomalies in paediatric Osteogenesis imperfecta patients: a retrospective cross-sectional study. BMC Musculoskelet Disord. 2014;15(1):428.  https://doi.org/10.1186/1471-2474-15-428.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Chines A, Petersen DJ, Schranck FW, Whyte MP. Hypercalciuria in children severely affected with osteogenesis imperfecta. J Pediatr. 1991;119(1 Pt 1):51–7. http://www.ncbi.nlm.nih.gov/pubmed/2066859. Accessed 2 July 2018CrossRefGoogle Scholar
  20. 20.
    Chines A, Boniface A, McAlister W, Whyte M. Hypercalciuria in osteogenesis imperfecta: a follow-up study to assess renal effects. Bone. 1995;16(3):333–9. http://www.ncbi.nlm.nih.gov/pubmed/7786636. Accessed 2 July 2018CrossRefGoogle Scholar
  21. 21.
    Radunovic Z, Steine K. Prevalence of cardiovascular disease and cardiac symptoms: left and right ventricular function in adults with osteogenesis imperfecta. Can J Cardiol. 2015;31(11):1386–92.  https://doi.org/10.1016/j.cjca.2015.04.016.CrossRefPubMedGoogle Scholar
  22. 22.
    Lamanna A, Fayers T, Clarke S, Parsonage W. Valvular and aortic diseases in osteogenesis imperfecta. Heart Lung Circ. 2013;22(10):801–10.  https://doi.org/10.1016/j.hlc.2013.05.640.CrossRefPubMedGoogle Scholar
  23. 23.
    Ashournia H, Johansen FT, Folkestad L, Diederichsen ACP, Brixen K. Heart disease in patients with osteogenesis imperfecta — a systematic review. Int J Cardiol. 2015;196:149–57.  https://doi.org/10.1016/j.ijcard.2015.06.001.CrossRefPubMedGoogle Scholar
  24. 24.
    Edouard T, Glorieux FH, Rauch F. Predictors and correlates of vitamin D status in children and adolescents with osteogenesis imperfecta. J Clin Endocrinol Metab. 2011;96(10):3193–8.  https://doi.org/10.1210/jc.2011-1480.CrossRefPubMedGoogle Scholar
  25. 25.
    Edouard T, Glorieux FH, Rauch F. Relationship between vitamin D status and bone mineralization, mass, and metabolism in children with osteogenesis imperfecta: histomorphometric study. J Bone Miner Res. 2011;26(9):2245–51.  https://doi.org/10.1002/jbmr.413.CrossRefPubMedGoogle Scholar
  26. 26.
    Plante L, Veilleux L-N, Glorieux FH, Weiler H, Rauch F. Effect of high-dose vitamin D supplementation on bone density in youth with osteogenesis imperfecta: a randomized controlled trial. Bone. 2016;86:36–42.  https://doi.org/10.1016/j.bone.2016.02.013.CrossRefPubMedGoogle Scholar
  27. 27.
    Nutrition – Osteogenesis Imperfecta Foundation | OIF.org. http://www.oif.org/site/PageServer?pagename=Nutrition. Accessed 2 July 2018.
  28. 28.
    Ward LM, Konji VN, Ma J. The management of osteoporosis in children. Osteoporos Int. 2016;27(7):2147–79.  https://doi.org/10.1007/s00198-016-3515-9.CrossRefPubMedGoogle Scholar
  29. 29.
    Dwan K, Phillipi CA, Steiner RD, Basel D. Bisphosphonate therapy for osteogenesis imperfecta. In: Basel D, editor. Cochrane database of systematic reviews. Chichester: Wiley; 2014. p. CD005088.  https://doi.org/10.1002/14651858.CD005088.pub3.CrossRefGoogle Scholar
  30. 30.
    Semler O, Netzer C, Hoyer-Kuhn H, Becker J, Eysel P, Schoenau E. First use of the RANKL antibody denosumab in osteogenesis imperfecta type VI. J Musculoskelet Neuronal Interact. 2012;12(3):183–8. http://www.ncbi.nlm.nih.gov/pubmed/22947550. Accessed 2 July 2018PubMedGoogle Scholar
  31. 31.
    Hoyer-Kuhn H, Stark C, Franklin J, Schoenau E, Semler O. Correlation of bone mineral density on quality of life in patients with osteogenesis imperfecta during treatment with denosumab. Pediatr Endocrinol Rev. 2017;15(Suppl 1):123–9.  https://doi.org/10.17458/per.vol15.2017.hsf.correlationbonemineraldensity.CrossRefPubMedGoogle Scholar
  32. 32.
    Hoyer-Kuhn H, Netzer C, Koerber F, Schoenau E, Semler O. Two years’ experience with denosumab for children with osteogenesis imperfecta type VI. Orphanet J Rare Dis. 2014;9:145.  https://doi.org/10.1186/s13023-014-0145-1.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Uehara M, Nakamura Y, Takahashi J, et al. Efficacy of denosumab for osteoporosis in three female patients with osteogenesis imperfecta. Tohoku J Exp Med. 2017;242(2):115–20.  https://doi.org/10.1620/tjem.242.115.CrossRefPubMedGoogle Scholar
  34. 34.
    Gatti D, Rossini M, Viapiana O, et al. Teriparatide treatment in adult patients with osteogenesis imperfecta type I. Calcif Tissue Int. 2013;93(5):448–52.  https://doi.org/10.1007/s00223-013-9770-2.CrossRefPubMedGoogle Scholar
  35. 35.
    Leali PT, Balsano M, Maestretti G, et al. Efficacy of teriparatide vs neridronate in adults with osteogenesis imperfecta type I: a prospective randomized international clinical study. Clin Cases Miner Bone Metab. 2017;14(2):153–6.  https://doi.org/10.11138/ccmbm/2017.14.1.153.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Orwoll ES, Shapiro J, Veith S, et al. Evaluation of teriparatide treatment in adults with osteogenesis imperfecta. J Clin Invest. 2014;124(2):491–8.  https://doi.org/10.1172/JCI71101.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Glorieux FH, Devogelaer J-P, Durigova M, et al. BPS804 anti-sclerostin antibody in adults with moderate osteogenesis imperfecta: results of a randomized phase 2a trial. J Bone Miner Res. 2017;32(7):1496–504.  https://doi.org/10.1002/jbmr.3143.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Endocrinology, Diabetes and MetabolismAdvocate Christ Medical CenterOak LawnUSA
  2. 2.Division of Endocrinology and MetabolismLoyola University Medical Center, Loyola University Osteoporosis and Metabolic Bone Disease CenterMaywoodUSA

Personalised recommendations