Advertisement

Conflict Measures and Importance Weighting for Information Fusion Applied to Industry 4.0

  • Uwe MönksEmail author
  • Volker Lohweg
  • Helene Dörksen
Chapter
Part of the Information Fusion and Data Science book series (IFDS)

Abstract

Information sources such as sensors, databases, and human experts serve as sources in order to realise condition monitoring and predictive maintenance in Industry 4.0 scenarios. Complex technical systems create a large amount of data which cannot be analysed manually. Thus, information fusion mechanisms gain increasing importance. Besides the management of large amounts of data, further challenges towards the fusion algorithms arise from epistemic uncertainties (incomplete knowledge) and—mostly overseen—conflicts in the input signals. This contribution describes the multilayered information fusion system MACRO (multilayer attribute-based conflict-reducing observation) employing the BalTLCS (balanced two-layer conflict solving) fusion algorithm to reduce the impact of conflicts on the fusion result by a quality measure which is denoted by importance. Furthermore, we show that the numerical stability in heavy conflicts is a key factor in real-world applications. Different examples end this contribution.

Keywords

Information fusion Industry 4.0 Conflict measures Importance weighting Machine learning MACRO system 

References

  1. 1.
    B.M. Ayyub, G.J. Klir, Uncertainty Modeling and Analysis in Engineering and the Sciences. (Chapman & Hall/CRC, Boca Raton, 2006)Google Scholar
  2. 2.
    C.M. Bishop, Pattern Recognition and Machine Learning. Information Science and Statistics, 8th edn. (Springer, New York, 2009)Google Scholar
  3. 3.
    M. Daniel, Belief functions: a revision of plausibility conflict and pignistic conflict, in Scalable Uncertainty Management, ed. by D. Hutchison, T. Kanade, J. Kittler, J.M. Kleinberg, F. Mattern, J.C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M.Y. Vardi, G. Weikum, W. Liu, V.S. Subrahmanian, J. Wijsen. Lecture Notes in Computer Science, vol. 8078 (Springer, Berlin/Heidelberg, 2013), pp. 190–203Google Scholar
  4. 4.
    M. Daniel, Properties of plausibility conflict of belief functions, in Artificial Intelligence and Soft Computing, ed. by D. Hutchison, T. Kanade, J. Kittler, J.M. Kleinberg, F. Mattern, J.C. Mitchell, M. Naor, O. Nierstrasz, C. {Pandu Rangan}, B. Steffen,M. Sudan, D. Terzopoulos, D. Tygar, M.Y. Vardi, G. Weikum, L. Rutkowski, M. Korytkowski, R. Scherer, R. Tadeusiewicz, L.A. Zadeh, J.M. Zurada. Lecture Notes in Computer Science, vol. 7894 (Springer, Berlin/Heidelberg, 2013), pp. 235–246Google Scholar
  5. 5.
    M. Daniel, Conflict between belief functions: a new measure based on their non-conflicting parts, in Belief Functions: Theory and Applications, ed. by F. Cuzzolin. Lecture Notes in Computer Science, vol. 8764 (Springer, Cham, 2014), pp. 321–330Google Scholar
  6. 6.
    A.P. Dempster, Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Stat. 38, 325–339 (1967)MathSciNetCrossRefGoogle Scholar
  7. 7.
    H. Dörksen, U. Mönks, V. Lohweg, Fast classification in industrial big data environments, in 19th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA 2014) (2014), pp. 1–7Google Scholar
  8. 8.
    D. Dubois, H. Prade, Possibility Theory: An Approach to Computerized Processing of Uncertainty. Softcover reprint of the original 1st edn., 1988 edn. (Plenum Press, New York/London, 1988)Google Scholar
  9. 9.
    L. Dymova, P. Sevastjanov, K. Tkacz, T. Cheherava, A new measure of conflict and hybrid combination rules in the evidence theory, in Artificial Intelligence and Soft Computing, ed. by D. Hutchison, T. Kanade, J. Kittler, J.M. Kleinberg, A. Kobsa, F. Mattern, J.C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, D. Terzopoulos, D. Tygar, G. Weikum, L. Rutkowski, M. Korytkowski, R. Scherer, R. Tadeusiewicz, L.A. Zadeh, J.M. Zurada. Lecture Notes in Computer Science, vol. 8468 (Springer, Cham, 2014), pp. 411–422Google Scholar
  10. 10.
    J.F. Ehlenbröker, U. Mönks, V. Lohweg, Sensor defect detection in multisensor information fusion. J. Sens. Sens. Syst. 5(2), 337–353 (2016)CrossRefGoogle Scholar
  11. 11.
    A. Fritze, U. Mönks, V. Lohweg, A concept for self-configuration of adaptive sensor and information fusion systems, in 21st International Conference on Emerging Technologies & Factory Automation (ETFA 2016), Berlin (2016)Google Scholar
  12. 12.
    A. Fritze, U. Mönks, V. Lohweg, A support system for sensor and information fusion system design. Procedia Technol. 2016(26), 580–587 (2016)CrossRefGoogle Scholar
  13. 13.
    A. Fritze, U. Mönks, C.A. Holst, V. Lohweg, An approach to automated fusion system design and adaptation. Sensors 17(3), 601 (2017)Google Scholar
  14. 14.
    M. Gebauer, Luftwaffe zweifelt an Absturzursache. DER SPIEGEL 2015(22), 64 (2015)Google Scholar
  15. 15.
    D.L. Hall, J. Llinas (eds.), Handbook of Multisensor Data Fusion. The Electrical Engineering and Applied Signal Processing Series (CRC Press, Boca Raton, 2001)Google Scholar
  16. 16.
    J.Y. Halpern, Reasoning about Uncertainty (The MIT Press, Cambridge, 2005)zbMATHGoogle Scholar
  17. 17.
    IEEE Computer Society, IEEE Standard for Binary Floating-Point Arithmetic: IEEE Std 754™-1985 (IEEE, New York, 1985)Google Scholar
  18. 18.
    IEEE Computer Society, IEEE Standard for Floating-Point Arithmetic: IEEE Std 754™-2008 (IEEE, Piscataway, 2008)Google Scholar
  19. 19.
    E.T. Jaynes, Probability Theory: The Logic of Science, 1. publ., repr edn. (Cambridge University Press, Cambridge, 2003)Google Scholar
  20. 20.
    B. Khaleghi, A. Khamis, F.O. Karray, S.N. Razavi, Multisensor data fusion: a review of the state-of-the-art. Inform. Fusion 14(1), 28–44 (2011)CrossRefGoogle Scholar
  21. 21.
    Koenig & Bauer AG, Press images (2014). http://www.kba.com/en/downloads-glossary/downloads/press-images/. Accessed 22 Apr 2016
  22. 22.
    J. Kuri, Absturz des Airbus A400M: Doch Softwarefehler in der Triebwerksteuerung (2015). http://heise.de/-2678691. Accessed 25 July 2017
  23. 23.
    H.L. Larsen, Importance weighted OWA aggregation of multicriteria queries, in 18th International Conference of the North American Fuzzy Information Processing Society (NAFIPS 1999) (1999), pp. 740–744. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=781792
  24. 24.
    R. Li, V. Lohweg, A novel data fusion approach using two-layer conflict solving, in International Workshop on Cognitive Information Processing (CIP 2008) (IEEE, 2008), pp. 132–136. http://www.eurasip.org/Proceedings/Ext/CIP2008/papers/1569094849.pdf
  25. 25.
    J.W. Li, Z.T. Hu, L. Zhou, Representation method of evidence conflict based on vector measure, in Control Conference (CCC), 2014 33rd Chinese (2014), pp. 7445–7449. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6896238
  26. 26.
    V. Lohweg, U. Mönks, Sensor fusion by two-layer conflict solving, in 2nd International Workshop on Cognitive Information Processing (CIP 2010) (IEEE, 2010), pp. 370–375. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5604094
  27. 27.
    V. Lohweg, C. Diederichs, D. Müller, Algorithms for hardware-based pattern recognition. EURASIP J. Appl. Signal Process. 2004(12), 1912–1920 (2004)Google Scholar
  28. 28.
    R.C. Luo, M.G. Kay, Data fusion and sensor integration: state-of-the-art 1990s, in Data Fusion in Robotics and Machine Intelligence, ed. by M.A. Abidi, R.C. Gonzalez (Academic, Boston, 1992), pp. 7–136Google Scholar
  29. 29.
    A. Martin, About conflict in the theory of belief functions, in Belief Functions: Theory and Applications, ed. by T. Denoeux, M.H. Masson. Advances in Intelligent and Soft Computing, vol. 164 (Springer, Berlin/Heidelberg, 2012), pp. 161–168Google Scholar
  30. 30.
    A. Martin, A.L. Jousselme, C. Osswald, Conflict measure for the discounting operation on belief functions, in 2008 11th International Conference on Information Fusion (2008), pp. 1–8Google Scholar
  31. 31.
    C. Minor, K. Johnson, Reliable sources and uncertain decisions in multisensor systems, in SPIE Sensing Technology + Applications, SPIE Proceedings (SPIE, 2015), p. 949803Google Scholar
  32. 32.
    C.B. Moler, Numerical Computing with Matlab (Society for Industrial and Applied Mathematics, Philadelphia, 2004)CrossRefGoogle Scholar
  33. 33.
    U. Mönks, Information Fusion Under Consideration of Conflicting Input Signals (Springer, Berlin/Heidelberg, 2017)CrossRefGoogle Scholar
  34. 34.
    U. Mönks, V. Lohweg, Fast evidence-based information fusion, in 4th International Workshop on Cognitive Information Processing (CIP 2014) (IEEE, 2014), pp. 1–6Google Scholar
  35. 35.
    U. Mönks, D. Petker, V. Lohweg, Fuzzy-pattern-classifier training with small data sets, in Information Processing and Management of Uncertainty in Knowledge-Based Systems, ed. by E. Hüllermeier, R. Kruse, F. Hoffmann. Communications in Computer and Information Science, vol. 80 (Springer, Berlin/Heidelberg, 2010), pp. 426–435Google Scholar
  36. 36.
    U. Mönks, H. Trsek, L. Dürkop, V. Geneiß, V. Lohweg, Towards distributed intelligent sensor and information fusion. Mechatronics 34, 63–71 (2015)CrossRefGoogle Scholar
  37. 37.
    U. Mönks, H. Dörksen, V. Lohweg, M. Hübner, Information fusion of conflicting input data. Sensors 16(11), 1798 (2016)Google Scholar
  38. 38.
    M. Niederhöfer, V. Lohweg, Application-based approach for automatic texture defect recognition on synthetic surfaces, in IEEE International Conference on Emerging Technologies and Factory Automation, 2008. ETFA 2008 (2008), pp. 229–232. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4638397
  39. 39.
    A. Ross, A.K. Jain, Multimodal human recognition systems, in Multi-sensor Image Fusion and Its Applications, ed. by Z. Liu, R. Blum. Signal Processing and Communications, vol. 26 (CRC Press, Boca Raton, 2005), pp. 289–301Google Scholar
  40. 40.
    G. Shafer, A Mathematical Theory of Evidence (Princeton University Press, Princeton, 1976)zbMATHGoogle Scholar
  41. 41.
    C.E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J. 27(4), 623–656 (1948)MathSciNetCrossRefGoogle Scholar
  42. 42.
    F. Smarandache, D. Han, A. Martin, Comparative study of contradiction measures in the theory of belief functions, in 2012 15th International Conference on Information Fusion (FUSION) (2012), pp. 271–277. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6289814
  43. 43.
    The MathWorks, Inc, Floating-Point Numbers. http://www.mathworks.com/help/matlab/matlab_prog/floating-point-numbers.html. Accessed 23 July 2016
  44. 44.
    G. Traufetter, Gehirnschlag im Cockpit. DER SPIEGEL 2010(8), 120–123 (2010)Google Scholar
  45. 45.
    G. Traufetter, Auf Absturz programmiert. DER SPIEGEL 2015(13), 120–121 (2015)Google Scholar
  46. 46.
    G. Traufetter, Steigflug ins Verderben. DER SPIEGEL 2015(2), 116 (2015)Google Scholar
  47. 47.
    K. Voth, S. Glock, U. Mönks, V. Lohweg, T. Türke, Multi-sensory machine diagnosis on security printing machines with two-layer conflict solving, in SENSOR+TEST Conference 2011 (AMA Service GmbH, Wunstorf, 2011), pp. 686–691Google Scholar
  48. 48.
    R.R. Yager, On ordered weighted averaging aggregation operators in multicriteria decisionmaking. IEEE Trans. Syst. Man Cybern. 18(1), 183–190 (1988)MathSciNetCrossRefGoogle Scholar
  49. 49.
    L.A. Zadeh, Fuzzy sets. Inform. Control 8(3), 338–353 (1965)CrossRefGoogle Scholar
  50. 50.
    L.A. Zadeh, Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1, 3–28 (1978)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.coverno GmbHLemgoGermany
  2. 2.inIT – Institute Industrial ITOstwestfalen-Lippe University of Applied SciencesLemgoGermany

Personalised recommendations