Advertisement

Data and Information Quality in Remote Sensing

  • John PuentesEmail author
  • Laurent Lecornu
  • Basel Solaiman
Chapter
Part of the Information Fusion and Data Science book series (IFDS)

Abstract

Remote sensing datasets are characterized by multiple types of imperfections that alter extracted information and taken decisions to a variable degree depending on data acquisition conditions, processing, and final product requirements. Therefore, regardless of the sensors, type of data, extracted information, and complementary algorithms, the quality assessment question is a pervading and particularly complex one. This chapter summarizes relevant quality assessment approaches that have been proposed for data acquisition, information extraction, and data and information fusion, of the remote sensing acquisition-decision process. The case of quality evaluation for geographic information systems, which make use of remote sensing products, is also described. Aspects of a comprehensive quality model for remote sensing and problems that remain to be addressed offer a perspective of possible evolutions in the field.

Keywords

Remote sensing Acquisition-decision process Geographic information systems Data-information fusion quality 

References

  1. 1.
    J.B. Campbell, R.H. Wynne, Introduction to Remote Sensing (Guilford Press, New York, 2011)Google Scholar
  2. 2.
    Y. Ma, H. Wu, L. Wang, B. Huang, R. Ranjan, A. Zomaya, W. Jie, Remote sensing big data computing: Challenges and opportunities. Futur. Gener. Comput. Syst. 51, 47–60 (2015)CrossRefGoogle Scholar
  3. 3.
    T. Miyoshi, K. Kondo, K. Terasaki, Big ensemble data assimilation in numerical weather prediction. Computer 11, 15–21 (2015)CrossRefGoogle Scholar
  4. 4.
    T. Miyoshi, M. Kunii, J. Ruiz, G.Y. Lien, S. Satoh, T. Ushio, et al., Big data assimilation – revolutionizing severe weather prediction. Bull. Am. Meteorol. Soc. 97(8), 1347–1354 (2016)CrossRefGoogle Scholar
  5. 5.
    E. Osuteye, C. Johnson, D. Brown, The data gap: An analysis of data availability on disaster losses in sub-Saharan African cities. Int. J. Disaster Risk Reduction 26, 24–33 (2017)CrossRefGoogle Scholar
  6. 6.
    C. Senf, R. Seidl, P. Hostert, Remote sensing of forest insect disturbances: Current state and future directions. Int. J. Appl. Earth Obs. Geoinf. 60, 49–60 (2017)CrossRefGoogle Scholar
  7. 7.
    S. Li, S. Dragicevic, F.A. Castro, M. Sester, S. Winter, A. Coltekin, et al., Geospatial big data handling theory and methods: A review and research challenges. ISPRS J. Photogramm. Remote Sens. 115, 119–133 (2016)CrossRefGoogle Scholar
  8. 8.
    L. Alparone, B. Aiazzi, S. Baronti, A. Garzelli, Remote Sensing Image Fusion (CRC Press, Boca Raton, 2015)CrossRefGoogle Scholar
  9. 9.
    L. Gómez-Chova, D. Tuia, G. Moser, G. Camps-Valls, Multimodal classification of remote sensing images: A review and future directions. Proc. IEEE 103(9), 1560–1584 (2015)CrossRefGoogle Scholar
  10. 10.
    J.A. Cummings, Ocean data quality control, in Operational Oceanography in the 21st Century, (Springer, Dordrecht, 2011), pp. 91–121Google Scholar
  11. 11.
    K.A. Kilpatrick, G. Podestá, S. Walsh, E. Williams, V. Halliwell, et al., A decade of sea surface temperature from MODIS. Remote Sens. Environ. 165, 27–41 (2012)CrossRefGoogle Scholar
  12. 12.
    H. Uehara, A.A. Kruts, Y.N. Volkov, T. Nakamura, T. Ono, H. Mitsudra, A new climatology of the Okhotsk sea derived from the FERHRI database. J. Oceanogr. 68(6), 869–886 (2012)CrossRefGoogle Scholar
  13. 13.
    F. Xu, A. Ignatov, In situ SST quality monitor (i quam). J. Atmos. Ocean. Technol. 31(1), 164–180 (2014)CrossRefGoogle Scholar
  14. 14.
    C. Donlon, I. Robinson, K.S. Casey, J. Vazquez-Cuervo, E. Armstrong, O. Arino, et al., The global ocean data assimilation experiment high-resolution sea surface temperature pilot project. Bull. Am. Meteorol. Soc. 88(8), 1197–1214 (2007)CrossRefGoogle Scholar
  15. 15.
    S. Guinehut, C. Coatanoan, A.L. Dhomps, P.Y. Le Traon, G. Larnicol, On the use of satellite altimeter data in Argo quality control. J. Atmos. Ocean. Technol. 26(2), 395–402 (2009)CrossRefGoogle Scholar
  16. 16.
    A.S. Bogdanoff, D.L. Westphal, J.R. Campbell, J.A. Cummings, E.J. Hyer, J.S. Reid, C.A. Clayson, Sensitivity of infrared sea surface temperature retrievals to the vertical distribution of airborne dust aerosol. Remote Sens. Environ. 159, 1–13 (2015)CrossRefGoogle Scholar
  17. 17.
    C.J. Merchant, A.R. Harris, E. Maturi, S. MacCallum, Probabilistic physically based cloud screening of satellite infrared imagery for operational sea surface temperature retrieval. Q. J. R. Meteorol. Soc. 131(611), 2735–2755 (2005)CrossRefGoogle Scholar
  18. 18.
    B.B. Barnes, C. Hu, A hybrid cloud detection algorithm to improve MODIS sea surface temperature data quality and coverage over the eastern gulf of Mexico. IEEE Trans. Geosci. Remote Sens. 51(6), 3273–3285 (2013)CrossRefGoogle Scholar
  19. 19.
    M. Bouali, A. Ignatov, Adaptive reduction of striping for improved sea surface temperature imagery from Suomi national polar-orbiting partnership (S-NPP) visible infrared imaging radiometer suite (viirs). J. Atmos. Ocean. Technol. 31(1), 150–163 (2014)CrossRefGoogle Scholar
  20. 20.
    P.K. Koner, A. Harris, E. Maturi, Hybrid cloud and error masking to improve the quality of deterministic satellite sea surface temperature retrieval and data coverage. Remote Sens. Environ. 174, 266–278 (2016)CrossRefGoogle Scholar
  21. 21.
    J.A. Cummings, Operational multivariate ocean data assimilation. Q. J. R. Meteorol. Soc. 131(613), 3583–3604 (2005)CrossRefGoogle Scholar
  22. 22.
    JCOMM Data Management Coordination. Final report of the third session of the JCOMM data management coordination group (jcomm dmcg-iii), Tech. Rep. 56, Intergovernmental Oceanographic Commission of UNESCO and World Meteorological Organization (2008)Google Scholar
  23. 23.
    E. Ahokas, H. Kaartinen, J. Hyyppä, A quality assessment of airborne laser scanner data. Int. Arch. Photogramm. Remote Sens. 34(part3), W13 (2003)Google Scholar
  24. 24.
    Z. Wan, Y. Zhang, Q. Zhang, Z.L. Li, Quality assessment and validation of the MODIS global land surface temperature. Int. J. Remote Sens. 25(1), 261–274 (2004)CrossRefGoogle Scholar
  25. 25.
    M. Neubert, H. Herold, G. Meinel, Evaluation of remote sensing image~segmentation quality–further results and concepts.~Int.~Arch.~Photogramm.~Remote~Sens.~Spatial Inf. Sci. 36(4/C42) (2006). http://www.isprs.org/proceedings/XXXVI/4-C42/Papers/10_Adaption%20and%20further%20development%20II/OBIA2006_Neubert_Herold_Meinel.pdf
  26. 26.
    R.R. Colditz, C. Conrad, T. Wehrmann, M. Schmidt, S. Dech, TiSeG: A flexible software tool for time-series generation of MODIS data utilizing the quality assessment science data set. IEEE Trans. Geosci. Remote Sens. 46(10), 3296–3308 (2008)CrossRefGoogle Scholar
  27. 27.
    K.A. Razak, M.W. Straatsma, C.J. Van Westen, J.P. Malet, S.M. De Jong, Airborne laser scanning of forested landslides characterization: Terrain model quality and visualization. Geomorphology 126(1–2), 186–200 (2011)CrossRefGoogle Scholar
  28. 28.
    Q. Zhan, M. Molenaar, K. Tempfli, W. Shi, Quality assessment for geo-spatial objects derived from remotely sensed data. Int. J. Remote Sens. 26(14), 2953–2974 (2005)CrossRefGoogle Scholar
  29. 29.
    Y. Shuai, C.B. Schaaf, A.H. Strahler, J. Liu, Z. Jiao, Quality assessment of BRDF/albedo retrievals in MODIS operational system. Geophys. Res. Lett. 35(L05407), 5 p (2008)Google Scholar
  30. 30.
    V.E. Brando, J.M. Anstee, M. Wettle, A.G. Dekker, S.R. Phinn, C. Roelfsema, A physics based retrieval and quality assessment of bathymetry from suboptimal hyperspectral data. Remote Sens. Environ. 113(4), 755–770 (2009)CrossRefGoogle Scholar
  31. 31.
    H.J. Buiten, B. Van Putten, Quality assessment of remote sensing image registration-analysis and testing of control point residuals. ISPRS J. Photogramm. Remote Sens. 52(2), 57–73 (1997)CrossRefGoogle Scholar
  32. 32.
    T.R. Loveland, B.C. Reed, J.F. Brown, D.O. Ohlen, Z. Zhu, L.W.M.J. Yang, J.W. Merchant, Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int. J. Remote Sens. 21(6–7), 1303–1330 (2000)CrossRefGoogle Scholar
  33. 33.
    U. Weidner, Contribution to the assessment of segmentation quality for remote sensing applications. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 37(B7), 479–484 (2008)Google Scholar
  34. 34.
    M.J. Smith, J. Rose, S. Booth, Geomorphological mapping of glacial landforms from remotely sensed data: An evaluation of the principal data sources and an assessment of their quality. Geomorphology 76(1–2), 148–165 (2006)CrossRefGoogle Scholar
  35. 35.
    S.O. Elberink, G. Vosselman, Quality analysis on 3D building models reconstructed from airborne laser scanning data. ISPRS J. Photogramm. Remote Sens. 66(2), 157–165 (2011)CrossRefGoogle Scholar
  36. 36.
    G.M. Foody, Harshness in image classification accuracy assessment. Int. J. Remote Sens. 29(11), 3137–3158 (2008)CrossRefGoogle Scholar
  37. 37.
    P.C. Smits, S.G. Dellepiane, R.A. Schowengerdt, Quality assessment of image classification algorithms for land-cover mapping: A review and a proposal for a cost-based approach. Int. J. Remote Sens. 20(8), 1461–1486 (1999)CrossRefGoogle Scholar
  38. 38.
    Y. Ke, L.J. Quackenbush, J. Im, Synergistic use of QuickBird multispectral imagery and LIDAR data for object-based forest species classification. Remote Sens. Environ. 114(6), 1141–1154 (2010)CrossRefGoogle Scholar
  39. 39.
    R.D. Fiete, T.A. Tantalo, Comparison of SNR image quality metrics for remote sensing systems. Opt. Eng. 40(4), 574–586 (2001)CrossRefGoogle Scholar
  40. 40.
    R.D. Fiete, T.A. Tantalo, J.R. Calus, J.A. Mooney, Image quality of sparse aperture designs for remote sensing. Opt. Eng. 41(8), 1957–1970 (2002)CrossRefGoogle Scholar
  41. 41.
    D. Scherler, S. Leprince, M.R. Strecker, Glacier-surface velocities in alpine terrain from optical satellite imagery – Accuracy improvement and quality assessment. Remote Sens. Environ. 112(10), 3806–3819 (2008)CrossRefGoogle Scholar
  42. 42.
    Q. Liu, R. Klucik, C. Chen, G. Grant, D. Gallaher, Q. Lv, L. Shang, Unsupervised detection of contextual anomaly in remotely sensed data. Remote Sens. Environ. 202, 75–87 (2017)CrossRefGoogle Scholar
  43. 43.
    J. Li, Spatial quality evaluation of fusion of different resolution images. Int. Arch. Photogramm. Remote Sens. 33(B2; PART 2), 339–346 (2000)Google Scholar
  44. 44.
    W. Shi, C. Zhu, Y. Tian, J. Nichol, Wavelet-based image fusion and quality assessment. Int. J. Appl. Earth Obs. Geoinf. 6(3–4), 241–251 (2005)CrossRefGoogle Scholar
  45. 45.
    R.G. Congalton, K. Green, Assessing the Accuracy of Remotely Sensed Data: Principles and Practices (CRC Press, Boca Raton, 2008)CrossRefGoogle Scholar
  46. 46.
    Y. Chen, Z.Y. Xue, R.S. Blum, Theoretical analysis of an information-based quality measure for image fusion. Inf. Fusion 9, 161–175 (2008)CrossRefGoogle Scholar
  47. 47.
    L. Wald, T. Ranchin, M. Mangolini, Fusion of satellite images of different spatial resolutions: Assessing the quality of resulting images. Photogramm. Eng. Remote. Sens. 63(6), 691–699 (1997)Google Scholar
  48. 48.
    J. Zhou, D.L. Civco, J.A. Silander, A wavelet transform method to merge Landsat TM and SPOT panchromatic data. Int. J. Remote Sens. 19(4), 743–757 (1998)CrossRefGoogle Scholar
  49. 49.
    L. Alparone, B. Aiazzi, S. Baronti, A. Garzelli, F. Nencini, M. Selva, Multispectral and panchromatic data fusion assessment without reference. Photogramm. Eng. Remote Sens. 74(2), 193–200 (2008)CrossRefGoogle Scholar
  50. 50.
    M.M. Khan, L. Alparone, J. Chanussot, Pansharpening quality assessment using the modulation transfer functions of instruments. IEEE Trans. Geosci. Remote Sens. 47(11), 3880–3891 (2009)CrossRefGoogle Scholar
  51. 51.
    J. Dong, D. Zhuang, Y. Huang, J. Fu, Advances in multi-sensor data fusion: Algorithms and applications. Sensors 9(10), 7771–7784 (2009)CrossRefGoogle Scholar
  52. 52.
    M. Ehlers, S. Klonus, P. Johan Åstrand, P. Rosso, Multi-sensor image fusion for pansharpening in remote sensing. Int. J. Image Data Fusion 1(1), 25–45 (2010)CrossRefGoogle Scholar
  53. 53.
    W. Wang, F. Chang, A multi-focus image fusion method based on Laplacian pyramid. J. Comput. 6(12), 2559–2566 (2011)CrossRefGoogle Scholar
  54. 54.
    X.X. Zhu, R. Bamler, A sparse image fusion algorithm with application to pan-sharpening. IEEE Trans. Geosci. Remote Sens. 51(5), 2827–2836 (2013)CrossRefGoogle Scholar
  55. 55.
    Y. Jiang, M. Wang, Image fusion with morphological component analysis. Information Fusion 18, 107–118 (2014)CrossRefGoogle Scholar
  56. 56.
    Y. Zhang, R.K. Mishra, From UNB PanSharp to Fuze Go – The success behind the pan-sharpening algorithm. Int. J. Image Data Fusion 5(1), 39–53 (2014)CrossRefGoogle Scholar
  57. 57.
    J. Liu, J. Huang, S. Liu, H. Li, Q. Zhou, J. Liu, Human visual system consistent quality assessment for remote sensing image fusion. ISPRS J. Photogramm. Remote Sens. 105, 79–90 (2015)CrossRefGoogle Scholar
  58. 58.
    P. Jagalingam, A.V. Hegde, A review of quality metrics for fused image. Aquatic Procedia 4, 133–142 (2015)CrossRefGoogle Scholar
  59. 59.
    R.C. Frohn, R.D. Lopez, Remote Sensing for Landscape Ecology. New Metric Indicators: Monitoring, Modeling, and Assessment of Ecosystems (CRC Press, Boca Raton, 2017)Google Scholar
  60. 60.
    C. Simoonga, J. Utzinger, S. Brooker, P. Vounatsou, C.C. Appleton, A.S. Stensgaard, et al., Remote sensing, geographical information system and spatial analysis for schistosomiasis epidemiology and ecology in Africa. Parasitology 136(13), 1683–1693 (2009)CrossRefGoogle Scholar
  61. 61.
    G.S. Bhunia, M.R. Dikhit, S. Kesari, G.C. Sahoo, P. Das, Role of remote sensing, geographical information system (GIS) and bioinformatics in kala-azar epidemiology. J. Biomed. Res. 25(6), 373–384 (2011)CrossRefGoogle Scholar
  62. 62.
    E. Opolot, Application of remote sensing and geographical information systems in flood management: A review. Res. J. Appl. Sci. Eng. Technol. 6(10), 1884–1894 (2013)CrossRefGoogle Scholar
  63. 63.
    D. Oikonomidis, S. Dimogianni, N. Kazakis, K. Voudouris, A GIS/remote sensing-based methodology for groundwater potentiality assessment in Tirnavos area, Greece. J. Hydrol. 525, 197–208 (2015)CrossRefGoogle Scholar
  64. 64.
    I.R. Hegazy, M.R. Kaloop, Monitoring urban growth and land use change detection with GIS and remote sensing techniques in Daqahlia governorate Egypt. Int. J. Sustainable Built Environ. 4(1), 117–124 (2015)CrossRefGoogle Scholar
  65. 65.
    N. Baghdadi, C. Mallet, M. Zribi (eds.), QGIS and Applications in Agriculture and Forest (Wiley, Hoboken, 2018)Google Scholar
  66. 66.
    R.J. Patil, Spatial Techniques for Soil Erosion Estimation: Remote Sensing and GIS Approach (Springer, Cham, Switzerland, 2018)Google Scholar
  67. 67.
    N.R. Chrisman, The role of quality information in the long-term functioning of a geographic information system. Cartographica Int. J. Geographic Inf. Geovisualization 21(2–3), 79–88 (1984). Part 2 Issues and problems relating to cartographic data use, exchange and transferCrossRefGoogle Scholar
  68. 68.
    R. Devillers, A. Stein, Y. Bédard, N. Chrisman, P. Fisher, W. Shi, Thirty years of research on spatial data quality: Achievements, failures, and opportunities. Trans. GIS 14(4), 387–400 (2010)CrossRefGoogle Scholar
  69. 69.
    ISO 8402:1994, Quality management and quality assurance – Vocabulary, https://www.iso.org/standard/20115.html
  70. 70.
    S. Servigne, N. Lesage, T. Libourel, Quality components, standards, and metadata, in Fundamentals of Spatial Data Quality, (2006), pp. 179–210CrossRefGoogle Scholar
  71. 71.
    ISO 19101-1:2014, Geographic information – Reference model – Part 1: Fundamentals, https://www.iso.org/standard/59164.html
  72. 72.
    ISO 19115-1:2014, Geographic information – Metadata – Part 1: Fundamentals, https://www.iso.org/standard/53798.html
  73. 73.
    ISO 19101-2:2018, Geographic information – Reference model – Part 2: Imagery, https://www.iso.org/standard/69325.html
  74. 74.
    ISO 19115:2009, Geographic information – Metadata – Part 2: Extensions for imagery and gridded data, https://www.iso.org/standard/39229.html
  75. 75.
    ISO/TC 211 Geographic information/Geomatics, https://www.iso.org/committee/54904.html
  76. 76.
    ISO 19157:2013(en), Geographic information – Data quality, https://www.iso.org/obp/ui/#iso:std:iso:19157:ed-1:v1:en
  77. 77.
    R. Devillers, R. Jeansoulin, Fundamentals of Spatial Data Quality (Wiley, Hoboken, 2010)zbMATHGoogle Scholar
  78. 78.
    A. Zargar, R. Devillers, An operation-based communication of spatial data quality. IEEE Int. Conf. Adv. Geogr. Inf. Syst. Web Serv., 140–145 (2009)Google Scholar
  79. 79.
    P. Díaz, J. Masó, E. Sevillano, M. Ninyerola, A. Zabala, I. Serral, et al., Analysis of quality metadata in the GEOSS clearinghouse. Int. J. Spatial Data Infrastructures Res. 7, 352–377 (2012)Google Scholar
  80. 80.
    I. Pôças, J. Gonçalves, B. Marcos, J. Alonso, P. Castro, J.P. Honrado, Evaluating the fitness for use of spatial data sets to promote quality in ecological assessment and monitoring. Int. J. Geogr. Inf. Sci. 28(11), 2356–2371 (2014)CrossRefGoogle Scholar
  81. 81.
    H. Senaratne, A. Mobasheri, A.L. Ali, C. Capineri, M. Haklay, A review of volunteered geographic information quality assessment methods. Int. J. Geogr. Inf. Sci. 31(1), 139–167 (2017)CrossRefGoogle Scholar
  82. 82.
    D.P. Ballou, H.L. Pazer, Modeling data and process quality in multi-input, multi-output information systems. Manag. Sci. 31(2), 150–162 (1985)CrossRefGoogle Scholar
  83. 83.
    R.Y. Wang, D.M. Strong, Beyond accuracy: What data quality means to data consumers. J. Manag. Inf. Syst. 12(4), 5–33 (1996)CrossRefGoogle Scholar
  84. 84.
    S.E. Madnick, R.Y. Wang, Y.W. Lee, H. Zhu, Overview and framework for data and information quality research. J. Data Inf. Qual. 1(1), article 2, 22 p (2009)Google Scholar
  85. 85.
    Z. Chen, Data Mining and Uncertain Reasoning: An Integrated Approach (Wiley, New York, 2001)Google Scholar
  86. 86.
    Naumann F, From databases to information systems-information quality makes the difference. 6th International Conference on Information Quality. (2001) pp. 244–260Google Scholar
  87. 87.
    A. Klein, W. Lehner, Representing data quality in sensor data streaming environments. J. Data Inf. Qual. 1(2), 10 (2009)Google Scholar
  88. 88.
    Rogova GL, Bosse E, Information quality in information fusion. 13th IEEE Conference on Information Quality in Information Fusion, (2010) pp. 1–8Google Scholar
  89. 89.
    I.G. Todoran, L. Lecornu, A. Khenchaf, J.M. Le Caillec, Fusion systems evaluation, in Multisensor Data Fusion: From Algorithms and Architectural Design to Applications, (CRC Press, Boca Raton, USA, 2017), pp. 147–156Google Scholar
  90. 90.
    V. Gunes, S. Peter, T. Givargis, F. Vahid, A survey on concepts, applications, and challenges in cyber-physical systems. KSII Trans. Int. Inf. Syst. 8(12), 4242–4268 (2014)Google Scholar
  91. 91.
    N. Chen, C. Xiao, F. Pu, X. Wang, C. Wang, Z. Wang, et al., Cyber-physical geographical information service-enabled control of diverse in-situ sensors. Sensors 15(2), 2565–2592 (2015)CrossRefGoogle Scholar
  92. 92.
    G. Mois, T. Sanislav, S.C. Folea, A cyber-physical system for environmental monitoring. IEEE Trans. Instrum. Meas. 65(6), 1463–1471 (2016)CrossRefGoogle Scholar
  93. 93.
    K. Sha, S. Zeadally, Data quality challenges in cyber-physical systems. J. Data Inf. Qual. 6(2–3), 8 (2015)Google Scholar
  94. 94.
    P. Merino Laso, D. Brosset, J. Puentes, Monitoring approach of cyber-physical systems by quality measures. Lect. Notes Inst. Comput. Sci. Soc. Informatics Telecommun. Eng. 205, 105–117 (2016)Google Scholar
  95. 95.
    P. Merino, Laso, D. Brosset, J. Puentes, Analysis of quality measurements to categorize anomalies in sensor systems. IEEE Comput. Conf., 1330–1338 (2017). https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8252077

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.IMT Atlantique, Lab-STICC, Technopole Brest Iroise – CS 83818BrestFrance
  2. 2.IMT Atlantique, Technopole Brest Iroise – CS 83818BrestFrance

Personalised recommendations