Advertisement

Biodiversity of Endophytic Fungi from Diverse Niches and Their Biotechnological Applications

  • Kusam Lata Rana
  • Divjot Kour
  • Imran Sheikh
  • Neelam Yadav
  • Ajar Nath YadavEmail author
  • Vinod Kumar
  • Bhim Pratap Singh
  • Harcharan Singh Dhaliwal
  • Anil Kumar Saxena
Chapter
Part of the Fungal Biology book series (FUNGBIO)

Abstract

Microbes colonizing the inner part of plants, viz., root, stem, or seeds, are referred to as endophytes. Diverse groups of microbes (archaea, bacteria, and eukarya) have been reported as niche-specific endophytes allied with different crop ecosystems. Among the diverse groups, endophytic fungi may play a biological role with their host plant for different attributes. Endophytic fungi influence the development of plants by producing plant growth hormones while at the same time improving nutrition by the bidirectional transfer of nutrients and the health of plants by protecting them against pathogens. Endophytic fungal associations with plants confer protection against adverse environmental conditions such as tolerance to heavy metals (Cu, Zn, and Pb) and increased drought resistance and successfully compete with saprobic fungi. Endophytes are ubiquitous organisms valued for their ability to synthesize various bioactive compounds and have proven to be important sources of new bioactive compounds and extracellular enzymes (amylase, asparaginase cellulase, chitinase, laccase, lipase, protease, and tyrosinase). Plants infected with endophytic fungi see significant increases in biomass, improve commercial plant production, and are thus useful in agroforestry and flori-horticulture applications. Endophytic fungi are of biotechnological interest due to their potential for use as genetic vectors, biological control agents, sources of secondary metabolites, antimicrobial agents, antitumor compounds, antibiotics, immunosuppressants, producers of natural antioxidants, antiviral compounds, insecticidal products, and antidiabetic agents. This chapter presents a critical review of the isolation, characterization, identification, biodiversity, and potential applications of endophytic fungi in agriculture and allied sectors.

Keywords

Fungal endophytes Biodiversity Niche-specific Plant growth promotion Biocontrol 

Notes

Acknowledgements

The authors acknowledge the Department of Biotechnology, Government of India, for the financial support provided (Grant BT/AGR/BIOFORTI/PHII/NIN/2011), Ministry of Food Processing Industries (MoFPI), Government of India, grant for infrastructural facility development (F. No. 5-11/2010-HRD), and Prof. H.S. Dhaliwal, Vice-Chancellor, Eternal University, Baru Sahib, for providing necessary infrastructural facilities and constant encouragement.

References

  1. Alexander M (1994) Biodegradation and bioremediation. Academic Press Inc, San Diego, CA, pp 267–269Google Scholar
  2. Almario J, Jeena G, Wunder J, Langen G, Zuccaro A, Coupland G, Bucher M (2017) Root-associated fungal microbiota of nonmycorrhizal Arabis alpina and its contribution to plant phosphorus nutrition. Proc Natl Acad Sci 114:E9403–E9412PubMedCrossRefPubMedCentralGoogle Scholar
  3. Aly AH, Edrada-Ebel R, Wray V, Müller WE, Kozytska S, Hentschel U, Proksch P, Ebel R (2008) Bioactive metabolites from the endophytic fungus Ampelomyces sp. isolated from the medicinal plant Urospermum picroides. Phytochemistry 69:1716–1725CrossRefGoogle Scholar
  4. Aly AH, Debbab A, Kjer J, Proksch P (2010) Fungal endophytes from higher plants: a prolific source of phytochemicals and other bioactive natural products. Fungal Divers 41:1–16CrossRefGoogle Scholar
  5. Aly AH, Debbab A, Proksch P (2011) Fungal endophytes: unique plant inhabitants with great promises. Appl Microbiol Biotechnol 90:1829–1845PubMedPubMedCentralCrossRefGoogle Scholar
  6. Ambrosini A, Beneduzi A, Stefanski T, Pinheiro F, Vargas L, Passaglia LP (2012) Screening of plant growth promoting rhizobacteria isolated from sunflower (Helianthus annuus L.). Plant Soil 356:245–264.  https://doi.org/10.1007/s11104-011-1079-1 CrossRefGoogle Scholar
  7. Andreote FD, Rossetto PB, Souza LC, Marcon J, Maccheroni W, Azevedo JL, Araujo WL (2008) Endophytic population of Pantoea agglomerans in citrus plants and development of a cloning vector for endophytes. J Basic Microbiol 48:338–346PubMedCrossRefPubMedCentralGoogle Scholar
  8. Araújo JMD, Silva ACD, Azevedo JL (2000) Isolation of endophytic actinomycetes from roots and leaves of maize (Zea mays L.). Braz Arch Biol Technol 43:447.  https://doi.org/10.1590/S1516-89132000000400016 CrossRefGoogle Scholar
  9. Bais HP, Broeckling CD, Vivanco JM (2008) Root exudates modulate plant—microbe interactions in the rhizosphere. In: Karlovsky P (ed) Secondary metabolites in soil ecology. Springer, Berlin, pp 241–252CrossRefGoogle Scholar
  10. Bakker AW, Schippers B (1987) Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas SPP-mediated plant growth-stimulation. Soil Biol Biochem 19:451–457CrossRefGoogle Scholar
  11. Beatriz Sánchez D, Gómez RM, García AM, Bonilla RR (2014) Phosphate solubilizing bacteria isolated from Pennisetum clandestinum associate to livestock systems in the andean area. Rev UDCA Actual Divul Cient 17:423–431Google Scholar
  12. Benjamin S, Pandey A (1998) Candida rugosa lipases: molecular biology and versatility in biotechnology. Yeast 14:1069–1087PubMedCrossRefPubMedCentralGoogle Scholar
  13. Bhagyasree S, Ghosh S, Thippaiah M, Rajgopal N (2018) Survey on natural occurrence of endophytes in maize (Zea mays L.) ecosystem. Int J Curr Microbiol App Sci 7:2526–2533CrossRefGoogle Scholar
  14. Bhatt M, Cajthaml T, Šašek V (2002) Mycoremediation of PAH-contaminated soil. Folia Microbiol 47:255–258CrossRefGoogle Scholar
  15. Biswas S, Kundu DK, Mazumdar SP, Saha AR, Majumdar B, Ghorai AK, Ghosh D, Yadav AN, Saxena AK (2018) Study on the activity and diversity of bacteria in a New Gangetic alluvial soil (Eutrocrept) under rice-wheatjute cropping system. Journal of Environmental Biology 39 (3):379–386CrossRefGoogle Scholar
  16. Bogner CW, Kamdem RS, Sichtermann G, Matthäus C, Hölscher D, Popp J, Proksch P, Grundler FM, Schouten A (2017) Bioactive secondary metabolites with multiple activities from a fungal endophyte. Microb Biotechnol 10:175–188PubMedCrossRefPubMedCentralGoogle Scholar
  17. Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant–fungus interactions in mycorrhizal symbiosis. Nat Commun 1:48PubMedCrossRefPubMedCentralGoogle Scholar
  18. Borges KB, Borges WDS, Pupo MT, Bonato PS (2008) Stereoselective analysis of thioridazine-2-sulfoxide and thioridazine-5-sulfoxide: an investigation of rac-thioridazine biotransformation by some endophytic fungi. J Pharm Biomed Anal 46:945–952PubMedCrossRefPubMedCentralGoogle Scholar
  19. Borrill P, Connorton JM, Balk J, Miller AJ, Sanders D, Uauy C (2014) Biofortification of wheat grain with iron and zinc: integrating novel genomic resources and knowledge from model crops. Front Plant Sci 5:53PubMedPubMedCentralCrossRefGoogle Scholar
  20. Bric JM, Bostock RM, Silverstone SE (1991) Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane. Appl Environ Microbiol 57:535–538PubMedPubMedCentralGoogle Scholar
  21. Brown ME, Burlingham SK (1968) Production of plant growth substances by Azotobacter chroococcum. J Gen Microbiol 53:135–144PubMedCrossRefPubMedCentralGoogle Scholar
  22. Burke AJ, Waller PA, Pickering WF (1989) The evaluation of inorganic phosphate species in salt water lake sediments. Chem Spec Bioavail 1:47–57CrossRefGoogle Scholar
  23. Bary A (1866) Morphologie und Physiologie der Pilze, Flechten, und Myxomyceten, (Vol. II), Hofmeister’s Handbook of Physiological Botany, Leipzig, GermanyGoogle Scholar
  24. Cappucino JC, Sherman N (1992) Nitrogen cycle. In: Microbiology: a laboratory manual, 4th edn. Benjamin/Cumming Pub. Co., New York, pp 311–312Google Scholar
  25. Carroll G (1988) Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont. Ecology 69:2–9CrossRefGoogle Scholar
  26. Chadha N, Prasad R, Varma A (2015) Plant promoting activities of fungal endophytes associated with tomato roots from central Himalaya, India and their interaction with Piriformospora indica. Int J Pharm Bio Sci 6:333–343Google Scholar
  27. Chatzistathis T, Therios I, Alifragis D (2009) Differential uptake, distribution within tissues, and use efficiency of manganese, iron, and zinc by olive cultivars kothreiki and koroneiki. Hort Sci 44:1994–1999Google Scholar
  28. Chen Z, Song Y, Chen Y, Huang H, Zhang W, Ju J (2012) Cyclic heptapeptides, cordyheptapeptides C–E, from the marine-derived fungus Acremonium persicinum SCSIO 115 and their cytotoxic activities. J Nat Prod 75:1215–1219PubMedCrossRefPubMedCentralGoogle Scholar
  29. Chen GD, Chen Y, Gao H, Shen LQ, Wu Y, Li XX, Li Y, Guo LD, Cen YZ, Yao XS (2013) Xanthoquinodins from the endolichenic fungal strain Chaetomium elatum. J Nat Prod 76:702–709PubMedCrossRefPubMedCentralGoogle Scholar
  30. Chen B, Shen J, Zhang X, Pan F, Yang X, Feng Y (2014) The endophytic bacterium, Sphingomonas SaMR12, improves the potential for zinc phytoremediation by its host, Sedum alfredii. PLoS One 9:e106826PubMedPubMedCentralCrossRefGoogle Scholar
  31. Choi Y, Hodgkiss I, Hyde K (2005) Enzyme production by endophytes of Brucea javanica. J Agric Technol 1:55–66Google Scholar
  32. Chow Y, Ting AS (2015) Endophytic L-asparaginase-producing fungi from plants associated with anticancer properties. J Adv Res 6:869–876PubMedCrossRefPubMedCentralGoogle Scholar
  33. Clark R, Lee S-H (2016) Anticancer properties of capsaicin against human cancer. Anticancer Res 36:837–843PubMedPubMedCentralGoogle Scholar
  34. Colangelo EP, Guerinot ML (2006) Put the metal to the petal: metal uptake and transport throughout plants. Curr Opin Plant Biol 9:322–330PubMedCrossRefPubMedCentralGoogle Scholar
  35. Colla G, Rouphael Y, Bonini P, Cardarelli M (2015) Coating seeds with endophytic fungi enhances growth, nutrient uptake, yield and grain quality of winter wheat. Int J Plant Prod 9:171–189Google Scholar
  36. Cook D, Gardner DR, Ralphs MH, Pfister JA, Welch KD, Green BT (2009) Swainsoninine concentrations and endophyte amounts of Undifilum oxytropis in different plant parts of Oxytropis sericea. J Chem Ecol 35:1272.  https://doi.org/10.1007/s10886-009-9710-9 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Correa A, Pacheco S, Mechaly AE, Obal G, Béhar G, Mouratou B, Oppezzo P, Alzari PM, Pecorari F (2014) Potent and specific inhibition of glycosidases by small artificial binding proteins (Affitins). PLoS One 9:e97438PubMedPubMedCentralCrossRefGoogle Scholar
  38. Costa ADR, Silva Júnior ML, Kern DC, Ruivo MDLP, Marichal R (2017) Forms of soil organic phosphorus at black earth sites in the Eastern Amazon. Rev Ciênc Agron 48:1–12CrossRefGoogle Scholar
  39. Carroll F (1977) Preliminary studies on the incidence of needle endophytes in some European conifers. Sydowia 29:87-103.Google Scholar
  40. de Souza Leite T, Cnossen-Fassoni A, Pereira OL, Mizubuti ESG, de Araújo EF, de Queiroz MV (2013) Novel and highly diverse fungal endophytes in soybean revealed by the consortium of two different techniques. J Microbiol 51:56–69PubMedCrossRefPubMedCentralGoogle Scholar
  41. Dai CC, Tian LS, Zhao YT, Chen Y, Xie H (2010) Degradation of phenanthrene by the endophytic fungus Ceratobasidum stevensii found in Bischofia polycarpa. Biodegradation 21:245–255PubMedCrossRefPubMedCentralGoogle Scholar
  42. Delaplace P, Delory BM, Baudson C, de Cazenave MMS, Spaepen S, Varin S, Brostaux Y, du Jardin P (2015) Influence of rhizobacterial volatiles on the root system architecture and the production and allocation of biomass in the model grass Brachypodium distachyon (L.) P. Beauv. BMC Plant Biol 15:195PubMedPubMedCentralCrossRefGoogle Scholar
  43. Desai A, Archana G (2011) Role of siderophores in crop improvement. In: Maheshwari DK (ed) Bacteria in agrobiology: plant nutrient management. Springer, Heidelberg, pp 109–139CrossRefGoogle Scholar
  44. Deshmukh S, Hückelhoven R, Schäfer P, Imani J, Sharma M, Weiss M, Waller F, Kogel K-H (2006) The root endophytic fungus Piriformospora indica requires host cell death for proliferation during mutualistic symbiosis with barley. Proc Natl Acad Sci 103:18450–18457PubMedCrossRefPubMedCentralGoogle Scholar
  45. Ding G, Li Y, Fu S, Liu S, Wei J, Che Y (2008) Ambuic acid and torreyanic acid derivatives from the endolichenic fungus Pestalotiopsis sp. J Nat Prod 72:182–186CrossRefGoogle Scholar
  46. Dong B, Rengel Z, Graham RD (1995) Root morphology of wheat genotypes differing in zinc efficiency. J Plant Nutr 18:2761–2773CrossRefGoogle Scholar
  47. Durmaz E, Coruh C, Dinler G, Grusak MA, Peleg Z, Saranga Y, Fahima T, Yazici A, Ozturk L, Cakmak I (2011) Expression and cellular localization of ZIP1 transporter under zinc deficiency in wild emmer wheat. Plant Mol Biol Rep 29:582–596CrossRefGoogle Scholar
  48. Elfita E, Muharni M, Munawar M, Legasari L, Darwati D (2011) Antimalarial compounds from endophytic fungi of Brotowali (Tinaspora crispa L). Indo J Chem 11:53–58CrossRefGoogle Scholar
  49. Erbert C, Lopes AA, Yokoya NS, Furtado NA, Conti R, Pupo MT, Lopes JLC, Debonsi HM (2012) Antibacterial compound from the endophytic fungus Phomopsis longicolla isolated from the tropical red seaweed Bostrychia radicans. Bot Mar 55:435–440CrossRefGoogle Scholar
  50. Eyberger AL, Dondapati R, Porter JR (2006) Endophyte fungal isolates from Podophyllum peltatum produce podophyllotoxin. J Nat Prod 69:1121–1124PubMedPubMedCentralCrossRefGoogle Scholar
  51. Fasim F, Ahmed N, Parsons R, Gadd GM (2002) Solubilization of zinc salts by a bacterium isolated from the air environment of a tannery. FEMS Microbiol Lett 213:1–6PubMedCrossRefPubMedCentralGoogle Scholar
  52. Feller IC (1995) Effects of nutrient enrichment on growth and herbivory of dwarf red mangrove (Rhizophora mangle). Ecol Monogr 64:477–505CrossRefGoogle Scholar
  53. Finlay RD (2008) Ecological aspects of mycorrhizal symbiosis: with special emphasis on the functional diversity of interactions involving the extraradical mycelium. J Exp Bot 59:1115–1126PubMedCrossRefPubMedCentralGoogle Scholar
  54. Fisher P, Petrini O, Scott HL (1992) The distribution of some fungal and bacterial endophytes in maize (Zea mays L.). New Phytol 122:299–305CrossRefGoogle Scholar
  55. Forchetti G, Masciarelli O, Izaguirre MJ, Alemano S, Alvarez D, Abdala G (2010) Endophytic bacteria improve seedling growth of sunflower under water stress, produce salicylic acid, and inhibit growth of pathogenic fungi. Curr Microbiol 61:485–493PubMedCrossRefPubMedCentralGoogle Scholar
  56. Fouda AH, Hassan SED, Eid AM, Ewais EED (2015) Biotechnological applications of fungal endophytes associated with medicinal plant Asclepias sinaica (Bioss.). Ann Agric Sci 60:95–104Google Scholar
  57. Gao F-K, Dai C-C, Liu X-Z (2010) Mechanisms of fungal endophytes in plant protection against pathogens. Afr J Microbiol Res 4:1346–1351Google Scholar
  58. Genc Y, Huang CY, Langridge P (2007) A study of the role of root morphological traits in growth of barley in zinc-deficient soil. J Exp Bot 58:2775–2784PubMedCrossRefPubMedCentralGoogle Scholar
  59. Gosal S, Karlupia A, Gosal S, Chhibba I, Varma A (2010) Biotization with Piriformospora indica and Pseudomonas fluorescens improves survival rate, nutrient acquisition, field performance and saponin content of micropropagated Chlorophytum sp. Indian J Biotechnol 09:289–297Google Scholar
  60. Goswami D, Dhandhukia P, Patel P, Thakker JN (2014) Screening of PGPR from saline desert of Kutch: growth promotion in Arachis hypogea by Bacillus licheniformis A2. Microbiol Res 169:66–75PubMedCrossRefPubMedCentralGoogle Scholar
  61. Guo B, Dai JR, Ng S, Huang Y, Leong C, Ong W, Carté BK (2000) Cytonic acids A and B: novel tridepside inhibitors of hCMV protease from the endophytic fungus Cytonaema species. J Nat Prod 63:602–604PubMedPubMedCentralCrossRefGoogle Scholar
  62. Gupta N, Sabat J, Parida R, Kerkatta D (2007) Solubilization of tricalcium phosphate and rock phosphate by microbes isolated from chromite, iron and manganese mines. Acta Bot Croat 66:197–204Google Scholar
  63. Hallmann J, Quadt-Hallmann A, Mahaffee W, Kloepper J (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914CrossRefGoogle Scholar
  64. Hamayun M, Khan SA, Ahmad N, Tang D-S, Kang S-M, Na C-I, Sohn E-Y, Hwang Y-H, Shin D-H, Lee B-H (2009) Cladosporium sphaerospermum as a new plant growth-promoting endophyte from the roots of Glycine max (L.) Merr. World J Microbiol Biotechnol 25:627–632CrossRefGoogle Scholar
  65. Hamayun M, Hussain A, Khan SA, Kim HY, Khan AL, Waqas M, Irshad M, Iqbal A, Rehman G, Jan S (2017) Gibberellins producing endophytic fungus Porostereum spadiceum AGH786 rescues growth of salt affected soybean. Front Microbiol 8:686.  https://doi.org/10.3389/fmicb.2017.00686 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Hamm MW (2008) Linking sustainable agriculture and public health: opportunities for realizing multiple goals. J Hun Environ Nutr 3:169–185CrossRefGoogle Scholar
  67. Hardoim P, Nissinen R, van Elsas JD (2012) Ecology of bacterial endophytes in sustainable agriculture. In: Maheshwari DK (ed) Bacteria in agrobiology: plant probiotics. Springer, Berlin, pp 97–126CrossRefGoogle Scholar
  68. Harnpicharnchai P, Champreda V, Sornlake W, Eurwilaichitr L (2009) A thermotolerant β-glucosidase isolated from an endophytic fungi, Periconia sp., with a possible use for biomass conversion to sugars. Protein Expr Purif 67:61–69PubMedPubMedCentralCrossRefGoogle Scholar
  69. Hodgson S, Cates C, Hodgson J, Morley NJ, Sutton BC, Gange AC (2014) Vertical transmission of fungal endophytes is widespread in forbs. Ecol Evol 4:1199–1208PubMedPubMedCentralCrossRefGoogle Scholar
  70. Hoffman AM, Mayer SG, Strobel GA, Hess WM, Sovocool GW, Grange AH, Harper JK, Arif AM, Grant DM, Kelley-Swift EG (2008) Purification, identification and activity of phomodione, a furandione from an endophytic Phoma species. Phytochemistry 69:1049–1056PubMedCrossRefPubMedCentralGoogle Scholar
  71. Hu X, Chen J, Guo J (2006) Two phosphate- and potassium-solubilizing bacteria isolated from Tianmu Mountain, Zhejiang, China. World J Microbiol Biotechnol 22:983–990.  https://doi.org/10.1007/s11274-006-9144-2 CrossRefGoogle Scholar
  72. Hung PQ, Annapurna K (2004) Isolation and characterization of endophytic bacteria in soybean (Glycine sp.). Omonrice 12:92–101Google Scholar
  73. Hirsch G, Braun U (1992) Communities of parasitic microfungi. In: Fungi in vegetation science. Springer, pp 225–250Google Scholar
  74. Jacobson CB, Pasternak J, Glick BR (1994) Partial purification and characterization of 1-aminocyclopropane-1-carboxylate deaminase from the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Can J Microbiol 40:1019–1025CrossRefGoogle Scholar
  75. Ji SH, Gururani MA, Chun S-C (2014) Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars. Microbiol Res 169:83–98PubMedCrossRefPubMedCentralGoogle Scholar
  76. Joseph B, Priya RM (2011) Bioactive compounds from endophytes and their potential in American. J Biochem Mol Biol 1:291–309Google Scholar
  77. Juhasz AL, Naidu R (2000) Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo [a] pyrene. Int Biodeter Biodegr 45:57–88CrossRefGoogle Scholar
  78. Kang SH, Cho H, Cheong H, Ryu C, Kim JF, Park S (2007) Two bacterial entophytes eliciting both plant growth promotion and plant defense on pepper (Capsicum annuum L.). J Microbiol Biotechnol 17:96–103PubMedPubMedCentralGoogle Scholar
  79. Kasotia A, Choudhary DK (2014) Role of endophytic microbes in mitigation of abiotic stress in plants. In: Ahmad P, Rasool S (eds) Emerging technologies and management of crop stress tolerance. Elsevier, New York, pp 97–108CrossRefGoogle Scholar
  80. Khalmuratova I, Kim H, Nam YJ, Oh Y, Jeong MJ, Choi HR, You YH, Choo YS, Lee IJ, Shin JH (2015) Diversity and plant growth promoting capacity of endophytic fungi associated with halophytic plants from the west coast of Korea. Mycobiology 43:373–383PubMedPubMedCentralCrossRefGoogle Scholar
  81. Khan SA, Hamayun M, Yoon H, Kim HY, Suh SJ, Hwang SK, Kim JM, Lee IJ, Choo YS, Yoon UH (2008) Plant growth promotion and Penicillium citrinum. BMC Microbiol 8:231PubMedPubMedCentralCrossRefGoogle Scholar
  82. Khan MS, Zaidi A, Ahemad M, Oves M, Wani PA (2010) Plant growth promotion by phosphate solubilizing fungi–current perspective. Arch Agron Soil Sci 56:73–98CrossRefGoogle Scholar
  83. Khan AL, Hamayun M, Kim YH, Kang SM, Lee IJ (2011) Ameliorative symbiosis of endophyte (Penicillium funiculosum LHL06) under salt stress elevated plant growth of Glycine max L. Plant Physiol Biochem 49:852–861PubMedCrossRefPubMedCentralGoogle Scholar
  84. Khan AR, Ullah I, Waqas M, Shahzad R, Hong SJ, Park GS, Jung BK, Lee IJ, Shin JH (2015) Plant growth-promoting potential of endophytic fungi isolated from Solanum nigrum leaves. World J Microbiol Biotechnol 31:1461–1466PubMedCrossRefPubMedCentralGoogle Scholar
  85. Kharwar RN, Verma VC, Kumar A, Gond SK, Harper JK, Hess WM, Lobkovosky E, Ma C, Ren Y, Strobel GA (2009) Javanicin, an antibacterial naphthaquinone from an endophytic fungus of neem, Chloridium sp. Curr Microbiol 58:233–238PubMedCrossRefPubMedCentralGoogle Scholar
  86. Kjer J, Wray V, Edrada-Ebel R, Ebel R, Pretsch A, Lin W, Proksch P (2009) Xanalteric acids I and II and related phenolic compounds from an endophytic Alternaria sp. isolated from the mangrove plant Sonneratia alba. J Nat Prod 72:2053–2057PubMedCrossRefPubMedCentralGoogle Scholar
  87. Kobayashi T, Nishizawa NK (2012) Iron uptake, translocation, and regulation in higher plants. Annu Rev Plant Biol 63:131–152PubMedCrossRefPubMedCentralGoogle Scholar
  88. Kobayashi DY, Palumbo JD (2000) Bacterial endophytes and their effects on plants and uses in agriculture. In: Bacon CW, White JF (eds) Microbial endophytes. Marcel Dekker, Inc., New York, NY, pp 199–233Google Scholar
  89. Kobayashi T, Itai RN, Nishizawa NK (2014) Iron deficiency responses in rice roots. Rice 7:27PubMedPubMedCentralCrossRefGoogle Scholar
  90. Köhl J, Lombaers C, Moretti A, Bandyopadhyay R, Somma S, Kastelein P (2015) Analysis of microbial taxonomical groups present in maize stalks suppressive to colonization by toxigenic Fusarium spp.: a strategy for the identification of potential antagonists. Biol Control 83:20–28CrossRefGoogle Scholar
  91. Kour D, Rana KL, Verma P, Yadav AN, Kumar V, Dhaliwal HS (2017a) Biofertilizers: Eco-friendly technologies and bioresources for sustainable agriculture. In: Proceeding of International Conference on Innovative Research in Engineering Science and Technology. p 14.Google Scholar
  92. Kour D, Rana KL, Verma P, Yadav AN, Kumar V, Dhaliwal HS (2017b) Drought tolerant phosphorus solubilizing microbes: Diversity and biotechnological applications for crops growing under rainfed conditions. In: Proceeding of National Conference on Advances in Food Science and Technology, p 166Google Scholar
  93. Kudalkar P, Strobel G, Riyaz-Ul-Hassan S, Geary B, Sears J (2012) Muscodor sutura, a novel endophytic fungus with volatile antibiotic activities. Mycoscience 53:319–325CrossRefGoogle Scholar
  94. Kusari S, Spiteller M (2011) Are we ready for industrial production of bioactive plant secondary metabolites utilizing endophytes? Nat Prod Rep 28:1203–1207PubMedCrossRefPubMedCentralGoogle Scholar
  95. Kusari S, Spiteller M (2012) Metabolomics of endophytic fungi producing associated plant secondary metabolites: progress, challenges and opportunities. In: Roessner U (ed) Metabolomics. InTech, Rijeka.  https://doi.org/10.5772/31596 CrossRefGoogle Scholar
  96. Kusari S, Lamshöft M, Spiteller M (2009) Aspergillus fumigatus Fresenius, an endophytic fungus from Juniperus communis L. Horstmann as a novel source of the anticancer prodrug deoxypodophyllotoxin. J Appl Microbiol 107:1019–1030CrossRefGoogle Scholar
  97. Kusari S, Verma VC, Lamshoeft M, Spiteller M (2012) An endophytic fungus from Azadirachta indica A. Juss. that produces azadirachtin. World J Microbiol Biotechnol 28:1287–1294CrossRefGoogle Scholar
  98. Larran S, Perello A, Simon M, Moreno V (2002) Isolation and analysis of endophytic microorganisms in wheat (Triticum aestivum L.) leaves. World J Microbiol Biotechnol 18:683–686CrossRefGoogle Scholar
  99. Larran S, Perelló A, Simón MR, Moreno V (2007) The endophytic fungi from wheat (Triticum aestivum L.). World J Microbiol Biotechnol 23:565–572CrossRefGoogle Scholar
  100. Lee JC, Lobkovsky E, Pliam NB, Strobel G, Clardy J (1995) Subglutinols A and B: immunosuppressive compounds from the endophytic fungus Fusarium subglutinans. J Org Chem 60:7076–7077CrossRefGoogle Scholar
  101. Lee JC, Strobel GA, Lobkovsky E, Clardy J (1996) Torreyanic acid: a selectively cytotoxic quinone dimer from the endophytic fungus Pestalotiopsis microspora. J Org Chem 61:3232–3233CrossRefGoogle Scholar
  102. Lee SO, Choi GJ, Choi YH, Jang KS, Park DJ, Kim CJ, Kim JC (2008) Isolation and characterization of endophytic actinomycetes from Chinese cabbage roots as antagonists to Plasmodiophora brassicae. J Microbiol Biotechnol 18:1741–1746PubMedPubMedCentralGoogle Scholar
  103. Li JY, Strobel GA (2001) Jesterone and hydroxy-jesterone antioomycete cyclohexenone epoxides from the endophytic fungus Pestalotiopsis jesteri. Phytochemistry 57:261–265PubMedCrossRefPubMedCentralGoogle Scholar
  104. Li GH, Yu ZF, Li X, Wang XB, Zheng LJ, Zhang KQ (2007a) Nematicidal metabolites produced by the endophytic fungus Geotrichum sp. AL4. Chem Biodivers 4:1520–1524PubMedCrossRefPubMedCentralGoogle Scholar
  105. Li W-C, Zhou J, Guo S-Y, Guo L-D (2007b) Endophytic fungi associated with lichens in Baihua mountain of Beijing, China. Fungal Divers 25:69–80Google Scholar
  106. Li W, Ye Z, Wong M (2010) Metal mobilization and production of short-chain organic acids by rhizosphere bacteria associated with a Cd/Zn hyperaccumulating plant, Sedum alfredii. Plant Soil 326:453–467CrossRefGoogle Scholar
  107. Li G, Wang H, Zhu R, Sun L, Wang L, Li M, Li Y, Liu Y, Zhao Z, Lou H (2012a) Phaeosphaerins A–F, cytotoxic perylenequinones from an endolichenic fungus, Phaeosphaeria sp. J Nat Prod 75:142–147PubMedCrossRefPubMedCentralGoogle Scholar
  108. Li HY, Wei DQ, Shen M, Zhou ZP (2012b) Endophytes and their role in phytoremediation. Fungal Divers 54:11–18CrossRefGoogle Scholar
  109. Lin Z-J, Lu Z-Y, Zhu T-J, Fang Y-C, Gu Q-Q, Zhu W-M (2008) Penicillenols from Penicillium sp. GQ-7, an endophytic fungus associated with Aegiceras corniculatum. Chem Pharm Bull 56:217–221PubMedCrossRefPubMedCentralGoogle Scholar
  110. Lu Y, Chen C, Chen H, Zhang J, Chen W (2012) Isolation and identification of endophytic fungi from Actinidia macrosperma and investigation of their bioactivities. Evid Based Complement Alternat Med 2012:382742.  https://doi.org/10.1155/2012/382742 CrossRefPubMedPubMedCentralGoogle Scholar
  111. Lumyong S, Lumyong P, McKenzie EH, Hyde KD (2002) Enzymatic activity of endophytic fungi of six native seedling species from Doi Suthep-Pui National Park, Thailand. Can J Microbiol 48:1109–1112PubMedCrossRefPubMedCentralGoogle Scholar
  112. Mano H, Morisaki H (2007) Endophytic bacteria in the rice plant. Microbes Environ 23:109–117CrossRefGoogle Scholar
  113. Manter DK, Delgado JA, Holm DG, Stong RA (2010) Pyrosequencing reveals a highly diverse and cultivar-specific bacterial endophyte community in potato roots. Microb Ecol 60:157–166PubMedCrossRefPubMedCentralGoogle Scholar
  114. Marinho AM, Rodrigues-Filho E, Moitinho MDLR, Santos LS (2005) Biologically active polyketides produced by Penicillium janthinellum isolated as an endophytic fungus from fruits of Melia azedarach. J Braz Chem Soc 16:280–283CrossRefGoogle Scholar
  115. Marler M, Pedersen D, Mitchell-Olds T, Callaway R (1999) A polymerase chain reaction method for detecting dwarf mistletoe infection in Douglas-fir and western larch. Can J For Res 29:1317–1321CrossRefGoogle Scholar
  116. Mathur N, Vyas P, Joshi N, Choudhary K, Purohit DK (2011) Mycorrhiza: a potent bioinoculant for sustainable agriculture. In: Pathak H, Sharma A (eds) Microbial technology “the emerging era” lap lambert. Academic Publishing Ag & Co. Kg, Dudweiller Landstr, pp 230–245Google Scholar
  117. Mendes R, Pizzirani-Kleiner AA, Araujo WL, Raaijmakers JM (2007) Diversity of cultivated endophytic bacteria from sugarcane: genetic and biochemical characterization of Burkholderia cepacia complex isolates. Appl Environ Microbiol 73:7259–7267PubMedPubMedCentralCrossRefGoogle Scholar
  118. Mercado-Blanco J, Lugtenberg B (2014) Biotechnological applications of bacterial endophytes. Curr Biotechnol 3:60–75CrossRefGoogle Scholar
  119. Miché L, Balandreau J (2001) Effects of rice seed surface sterilization with hypochlorite on inoculated Burkholderia vietnamiensis. Appl Environ Microbiol 67:3046–3052PubMedPubMedCentralCrossRefGoogle Scholar
  120. Mingma R, Pathom-aree W, Trakulnaleamsai S, Thamchaipenet A, Duangmal K (2014) Isolation of rhizospheric and roots endophytic actinomycetes from Leguminosae plant and their activities to inhibit soybean pathogen, Xanthomonas campestris pv. glycine. World J Microbiol Biotechnol 30:271–280PubMedCrossRefPubMedCentralGoogle Scholar
  121. Mishra S, Singh A, Keswani C, Saxena A, Sarma B, Singh H (2015) Harnessing plant-microbe interactions for enhanced protection against phytopathogens. In: Arora N (ed) Plant microbes symbiosis: applied facets. Springer, New Delhi, pp 111–125Google Scholar
  122. Mishra VK, Singh G, Passari AK, Yadav MK, Gupta VK, Singh BP (2016a) Distribution and antimicrobial potential of endophytic fungi associated with ethnomedicinal plant Melastoma malabathricum L. J Environ Biol 37(2):229–237Google Scholar
  123. Mishra VK, Passari AK, Singh BP (2016b) In vitro antimycotic and biosynthetic potential of fungal endophytes associated with Schima Wallichii. In: Kumar P et al (eds) Current trends in disease diagnostics. Springer, Cham, pp 367–381CrossRefGoogle Scholar
  124. Mishra VK, Passari AK, Chandra P, Leo VV, Kumar B, Gupta VK, Singh BP (2017a) Determination and production of antimicrobial compounds by Aspergillus clavatonanicus strain MJ31, an endophytic fungus from Mirabilis jalapa L. using UPLC-ESI-MS/MS and TD GC-MS. PLoS One 12(10):1–24.  https://doi.org/10.1371/journal.pone.0186234 CrossRefGoogle Scholar
  125. Mishra VK, Passari AK, Leo VV, Singh BP (2017b) Molecular diversity and detection of endophytic fungi based on their antimicrobial biosynthetic genes. In: Singh BP, Gupta VK (eds) Molecular markers in mycology, fungal biology. Springer, Cham, pp 1–35.  https://doi.org/10.1007/978-3-319-34106-4_1 CrossRefGoogle Scholar
  126. Mohd S, Shukla J, Kushwaha AS, Mandrah K, Shankar J, Arjaria N, Saxena PN, Narayan R, Roy SK, Kumar M (2017) Endophytic fungi Piriformospora indica mediated protection of host from arsenic toxicity. Front Microbiol 8:754PubMedPubMedCentralCrossRefGoogle Scholar
  127. Montanez A, Blanco AR, Barlocco C, Beracochea M, Sicardi M (2012) Characterization of cultivable putative endophytic plant growth promoting bacteria associated with maize cultivars (Zea mays L.) and their inoculation effects in vitro. Appl Soil Ecol 58:21–28CrossRefGoogle Scholar
  128. Mostert L, Crous P, Petrini O (2000) Endophytic fungi associated with shoots and leaves of Vitis vinifera, with specific reference to the Phomopsis viticola complex. Sydowia 52:46–58Google Scholar
  129. Naik BS, Shashikala J, Krishnamurthy Y (2009a) Study on the diversity of endophytic communities from rice (Oryza sativa L.) and their antagonistic activities in vitro. Microbiol Res 164:290–296PubMedCrossRefPubMedCentralGoogle Scholar
  130. Naik BS, Shashikala J, Krishnamurthy Y (2009b) Study on the diversity of endophytic communities from rice (Oryza sativa L.) and their antagonistic activities in vitro. Microbiol Res 164:290–296PubMedCrossRefPubMedCentralGoogle Scholar
  131. Narayan OP, Verma N, Singh AK, Oelmüller R, Kumar M, Prasad D, Kapoor R, Dua M, Johri AK (2017) Antioxidant enzymes in chickpea colonized by Piriformospora indica participate in defense against the pathogen Botrytis cinerea. Sci Rep 7:13553.  https://doi.org/10.1038/s41598-017-12944-w CrossRefPubMedPubMedCentralGoogle Scholar
  132. Narula S, Anand R, Dudeja S, Pathak D (2013) Molecular diversity of root and nodule endophytic bacteria from field pea (Pisum sativum L.). Legum Res 36:344–350Google Scholar
  133. Nath R, Sharma G, Barooah M (2012) Efficiency of tricalcium phosphate solubilization by two different endophytic Penicillium sp. isolated from tea (Camellia sinensis L.). Eur J Exp Biol 2:1354–1358Google Scholar
  134. Nath R, Sharma G, Barooah M (2015) Plant growth promoting endophytic fungi isolated from tea (Camellia sinensis) shrubs of Assam, India. Appl Ecol Environ Res 13:877–891Google Scholar
  135. Nefzi A, Aydi Ben Abdallah R, Jabnoun-Khiareddine H, Ammar N, Somai L, Hamada W, Haouala R, Daami-Remadi M (2018) Investigation on biosuppression of Fusarium crown and root rot of tomato (Solanum lycopersicum L.) and growth promotion using fungi naturally associated to Solanum linnaeanum L. Afr J Microbiol Res 12:152–170CrossRefGoogle Scholar
  136. Nisa H, Kamili AN, Nawchoo IA, Shafi S, Shameem N, Bandh SA (2015) Fungal endophytes as prolific source of phytochemicals and other bioactive natural products: a review. Microb Pathog 82:50–59CrossRefGoogle Scholar
  137. Nyoki D, Ndakidemi PA (2014) Effects of Bradyrhizobium japonicum and phosphorus supplementation on the productivity of legumes. Int J Plant Soil Sci 3:894–910CrossRefGoogle Scholar
  138. Petrini O (1991) Fungal endophytes of tree leaves. In: Andrews JH, Hirano SS (eds) Microbial ecology of leaves. Springer, New York, pp 179–197Google Scholar
  139. Pfeiffer WH, McClafferty B (2007) HarvestPlus: breeding crops for better nutrition. Crop Sci 47:S-88–S-105CrossRefGoogle Scholar
  140. Phongpaichit S, Rungjindamai N, Rukachaisirikul V, Sakayaroj J (2006) Antimicrobial activity in cultures of endophytic fungi isolated from Garcinia species. FEMS Immunol Med Microbiol 48:367–372PubMedCrossRefPubMedCentralGoogle Scholar
  141. Pikovskaya R (1948) Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Mikrobiologiya 17:362–370Google Scholar
  142. Pimentel MR, Molina G, Dionísio AP, Maróstica Junior MR, Pastore GM (2011) The use of endophytes to obtain bioactive compounds and their application in biotransformation process. Biotechnol Res Int 2011:1.  https://doi.org/10.4061/2011/576286 CrossRefGoogle Scholar
  143. Pinto LSRC, Azevedo JL, Pereira JO, Vieira MLC, Labate CA (2000) Symptomless infection of banana and maize by endophytic fungi impairs photosynthetic efficiency. New Phytol 147:609–615CrossRefGoogle Scholar
  144. Piromyou P, Greetatorn T, Teamtisong K, Okubo T, Shinoda R, Nuntakij A, Tittabutr P, Boonkerd N, Minamisawa K, Teaumroong N (2015) Preferential association of endophytic Bradyrhizobia with different rice cultivars and its implications for rice endophyte evolution. Appl Environ Microbiol 81:3049–3061PubMedPubMedCentralCrossRefGoogle Scholar
  145. Pointing S (2001) Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57:20–33CrossRefGoogle Scholar
  146. Pongcharoen W, Rukachaisirikul V, Phongpaichit S, Kühn T, Pelzing M, Sakayaroj J, Taylor WC (2008) Metabolites from the endophytic fungus Xylaria sp. PSU-D14. Phytochemistry 69:1900–1902CrossRefGoogle Scholar
  147. Poonguzhali S, Madhaiyan M, Sa T (2006) Cultivation-dependent characterization of rhizobacterial communities from field grown Chinese cabbage Brassica campestris ssp pekinensis and screening of traits for potential plant growth promotion. Plant Soil 286:167–180CrossRefGoogle Scholar
  148. Porras-Alfaro A, Bayman P (2011) Hidden fungi, emergent properties: endophytes and microbiomes. Annu Rev Phytopathol 49:291–315CrossRefPubMedPubMedCentralGoogle Scholar
  149. Priyadharsini P, Muthukumar T (2017) The root endophytic fungus Curvularia geniculata from Parthenium hysterophorus roots improves plant growth through phosphate solubilization and phytohormone production. Fungal Ecol 27:69–77CrossRefGoogle Scholar
  150. Providenti MA, Lee H, Trevors JT (1993) Selected factors limiting the microbial degradation of recalcitrant compounds. J Ind Microbiol 12:379–395CrossRefGoogle Scholar
  151. Puri SC, Verma V, Amna T, Qazi GN, Spiteller M (2005) An endophytic fungus from Nothapodytes foetida that produces camptothecin. J Nat Prod 68:1717–1719PubMedCrossRefGoogle Scholar
  152. Quadt-Hallmann A, Kloepper J, Benhamou N (1997) Bacterial endophytes in cotton: mechanisms of entering the plant. Can J Microbiol 43:577–582CrossRefGoogle Scholar
  153. Rado R, Andrianarisoa B, Ravelomanantsoa S, Rakotoarimanga N, Rahetlah V, Fienena F, Andriambeloson O (2015) Biocontrol of potato wilt by selective rhizospheric and endophytic bacteria associated with potato plant. Afr J Food Agric Nutr Dev 15:9762–9776Google Scholar
  154. Rai M, Rathod D, Agarkar G, Dar M, Brestic M, Pastore GM, Junior MRM (2014) Fungal growth promotor endophytes: a pragmatic approach towards sustainable food and agriculture. Symbiosis 62:63–79CrossRefGoogle Scholar
  155. Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149PubMedCrossRefPubMedCentralGoogle Scholar
  156. Rana KL, Kour D, Yadav AN, Kumar V, Dhaliwal HS (2016a) Biotechnological applications of endophytic microbes associated with barley (Hordeum vulgare L.) growing in Indian Himalayan regions. In: In: Proceeding of 86th Annual Session of NASI & Symposium on “Science, Technology and Entrepreneurship for Human Welfare in The Himalayan Region”, p 80Google Scholar
  157. Rana KL, Kour D, Yadav AN, Kumar V, Dhaliwal HS (2016b) Endophytic microbes from wheat: Diversity and biotechnological applications for sustainable agriculture. In: In: Proceeding of 57th Association of Microbiologist of India & International symposium on “Microbes and Biosphere: What’s New What’s Next”, p 453Google Scholar
  158. Rana KL, Kour D, Verma P, Yadav A, Kumar V, Singh D (2017) Diversity and biotechnological applications of endophytic microbes associated with maize (Zea mays L.) growing in Indian Himalayan regions In: Proceeding of national conference on advances in food science and technology, p 41Google Scholar
  159. Rana KL, Kour D, Yadav AN (2018) Endophytic microbiomes: Biodiversity, ecological significance and biotechnological applications. Res J Biotechnol 14:1–30Google Scholar
  160. Rêgo MCF, Ilkiu-Borges F, Filippi MCCD, Gonçalves LA, Silva GBD (2014) Morphoanatomical and biochemical changes in the roots of rice plants induced by plant growth-promoting microorganisms. J Bot 2014:818797.  https://doi.org/10.1155/2014/818797 CrossRefGoogle Scholar
  161. Ren X, Zhang N, Cao M, Wu K, Shen Q, Huang Q (2012) Biological control of tobacco black shank and colonization of tobacco roots by a Paenibacillus polymyxa strain C5. Biol Fertil Soils 48:613–620CrossRefGoogle Scholar
  162. Rinu K, Sati P, Pandey A (2014) Trichoderma gamsii (NFCCI 2177): a newly isolated endophytic, psychrotolerant, plant growth promoting, and antagonistic fungal strain. J Basic Microbiol 54:408–417PubMedCrossRefPubMedCentralGoogle Scholar
  163. Rodrıguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339PubMedCrossRefPubMedCentralGoogle Scholar
  164. Rollinger JL, Langenheim JH (2018) Geographic Survey of Fungal Endophyte Community Composition in Leaves of Coastal Redwood. Mycologia 85 (2):149–156CrossRefGoogle Scholar
  165. Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant-Microbe Interact 19:827–837CrossRefGoogle Scholar
  166. Russell JR, Huang J, Anand P, Kucera K, Sandoval AG, Dantzler KW, Hickman D, Jee J, Kimovec FM, Koppstein D (2011) Biodegradation of polyester polyurethane by endophytic fungi. Appl Environ Microbiol 77:6076–6084PubMedPubMedCentralCrossRefGoogle Scholar
  167. Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9PubMedCrossRefPubMedCentralGoogle Scholar
  168. Sahay H, Yadav AN, Singh AK, Singh S, Kaushik R, Saxena AK (2017) Hot springs of Indian Himalayas: potential sources of microbial diversity and thermostable hydrolytic enzymes. 3. Biotech 7:1–11Google Scholar
  169. Saini R, Dudeja SS, Giri R, Kumar V (2015) Isolation, characterization, and evaluation of bacterial root and nodule endophytes from chickpea cultivated in Northern India. J Basic Microbiol 55:74–81PubMedCrossRefPubMedCentralGoogle Scholar
  170. Sane S, Mehta S (2015) Isolation and evaluation of rock phosphate solubilizing fungi as potential biofertilizer. J Fertil Pestic 6:156–160CrossRefGoogle Scholar
  171. Saxena S, Meshram V, Kapoor N (2015) Muscodor tigerii sp. nov.-volatile antibiotic producing endophytic fungus from the northeastern Himalayas. Ann Microbiol 65:47–57CrossRefGoogle Scholar
  172. Saxena AK, Yadav AN, Rajawat M, Kaushik R, Kumar R, Kumar M, Prasanna R, Shukla L (2016) Microbial diversity of extreme regions: an unseen heritage and wealth. Indian J Plant Gen Res 29:246–248CrossRefGoogle Scholar
  173. Schardl CL, Leuchtmann A, Spiering MJ (2004) Symbioses of grasses with seedborne fungal endophytes. Annu Rev Plant Biol 55:315–340PubMedCrossRefPubMedCentralGoogle Scholar
  174. Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661–686CrossRefGoogle Scholar
  175. Schwyn B, Neilands J (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56PubMedPubMedCentralCrossRefGoogle Scholar
  176. Semple KT, Morriss A, Paton GI (2003) Bioavailability of hydrophobic organic contaminants in soils: fundamental concepts and techniques for analysis. Eur J Soil Sci 54:809–818CrossRefGoogle Scholar
  177. Sharma SK, Sharma MP, Ramesh A, Joshi OP (2012) Characterization of zinc-solubilizing Bacillus isolates and their potential to influence zinc assimilation in soybean seeds. J Microbiol Biotechnol 22:352–359PubMedCrossRefPubMedCentralGoogle Scholar
  178. Sharma D, Pramanik A, Agrawal PK (2016) Evaluation of bioactive secondary metabolites from endophytic fungus Pestalotiopsis neglecta BAB-5510 isolated from leaves of Cupressus torulosa D.Don. 3 Biotech 6:210.  https://doi.org/10.1007/s13205-016-0518-3 CrossRefPubMedPubMedCentralGoogle Scholar
  179. Sheng X-F, Xia J-J, Jiang C-Y, He L-Y, Qian M (2008) Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environ Pollut 156:1164–1170PubMedCrossRefPubMedCentralGoogle Scholar
  180. Shweta S, Zuehlke S, Ramesha B, Priti V, Kumar PM, Ravikanth G, Spiteller M, Vasudeva R, Shaanker RU (2010) Endophytic fungal strains of Fusarium solani, from Apodytes dimidiata E. Mey. ex Arn (Icacinaceae) produce camptothecin, 10-hydroxycamptothecin and 9-methoxycamptothecin. Phytochemistry 71:117–122PubMedCrossRefPubMedCentralGoogle Scholar
  181. Sijam K, Dikin A (2005) Biochemical and physiological characterization of Burkholderia cepacia as biological control agent. Int J Agric Biol 7:385–388Google Scholar
  182. Singh DP, Singh HB, Prabha R (2016a) Microbial inoculants in sustainable agricultural productivity. Springer, New DelhiCrossRefGoogle Scholar
  183. Singh RN, Gaba S, Yadav AN, Gaur P, Gulati S, Kaushik R, Saxena AK (2016b) First, high quality draft genome sequence of a plant growth promoting and cold active enzymes producing psychrotrophic Arthrobacter agilis strain L77. Stand Genomic Sci 11:54.  https://doi.org/10.1186/s40793-016-0176-4 CrossRefPubMedPubMedCentralGoogle Scholar
  184. Singh DP, Singh HB, Prabha R (2017) Plant-microbe interactions in agro-ecological perspectives. Springer, New DelhiCrossRefGoogle Scholar
  185. Sirohi G, Upadhyay A, Srivastava PS, Srivastava S (2015) PGPR mediated zinc biofertilization of soil and its impact on growth and productivity of wheat. J Soil Sci Plant Nutr 15:202–216Google Scholar
  186. Sommart U, Rukachaisirikul V, Tadpetch K, Sukpondma Y, Phongpaichit S, Hutadilok-Towatana N, Sakayaroj J (2012) Modiolin and phthalide derivatives from the endophytic fungus Microsphaeropsis arundinis PSU-G18. Tetrahedron 68:10005–10010CrossRefGoogle Scholar
  187. Soni R, Yadav SK, Rajput AS (2018) ACC-deaminase producing rhizobacteria: prospects and application as stress busters for stressed agriculture. In: Panpatte DG, Jhala YK, Shelat HN, Vyas RV (eds) Microorganisms for green revolution. Springer, New Delhi, pp 161–175CrossRefGoogle Scholar
  188. Spagnoletti F, Tobar N, Di Pardo AF, Chiocchio V, Lavado R (2017) Dark septate endophytes present different potential to solubilize calcium, iron and aluminium phosphates. Appl Soil Ecol 111:25–32CrossRefGoogle Scholar
  189. Srivastava AK, Kumar S, Kaushik R, Saxena AK, Padaria JC, Gupta A, Pal KK, Gujar GT, Sharma A, Singh P (2013) Diversity analysis of Bacillus and other predominant genera in extreme environments and its utilization in Agriculture.  https://doi.org/10.13140/2.1.1357.3927
  190. Stein AJ (2010) Global impacts of human mineral malnutrition. Plant Soil 335:133–154CrossRefGoogle Scholar
  191. Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260:214–216PubMedCrossRefPubMedCentralGoogle Scholar
  192. Stone JK, Bacon CW, White J (2000) An overview of endophytic microbes: endophytism defined. In: Bacon CW, White JF (eds) Microbial endophytes. Marcel Dekker, New York, pp 3–29Google Scholar
  193. Strobel GA (2003) Endophytes as sources of bioactive products. Microbes Infect 5:535–544CrossRefGoogle Scholar
  194. Strobel GA, Pliam NB (1997) Immunosuppressant diterpene compound. Google PatentsGoogle Scholar
  195. Strobel GA, Torczynski R, Bollon A (1997) Acremonium sp.—a leucinostatin A producing endophyte of European yew (Taxus baccata). Plant Sci 128:97–108CrossRefGoogle Scholar
  196. Strobel GA, Miller RV, Martinez-Miller C, Condron MM, Teplow DB, Hess W (1999) Cryptocandin, a potent antimycotic from the endophytic fungus Cryptosporiopsis cf. quercina. Microbiology 145:1919–1926PubMedCrossRefPubMedCentralGoogle Scholar
  197. Strobel G, Ford E, Worapong J, Harper JK, Arif AM, Grant DM, Fung PC, Chau RMW (2002) Isopestacin, an isobenzofuranone from Pestalotiopsis microspora, possessing antifungal and antioxidant activities. Phytochemistry 60:179–183PubMedCrossRefPubMedCentralGoogle Scholar
  198. Su H, Kang J, Cao J, Mo L, Hyde KD (2014) Medicinal plant endophytes produce analogous bioactive compounds. Chiang Mai J Sci 41:1–13Google Scholar
  199. Suman A, Verma P, Yadav AN, Saxena AK (2015) Bioprospecting for extracellular hydrolytic enzymes from culturable thermotolerant bacteria isolated from Manikaran thermal springs. Res J Biotechnol 10:33–42Google Scholar
  200. Suman A, Verma P, Yadav AN, Srinivasamurthy R, Singh A, Prasanna R (2016a) Development of hydrogel based bio-inoculant formulations and their impact on plant biometric parameters of wheat (Triticum aestivum L.). Int J Curr Microbiol Appl Sci 5:890–901CrossRefGoogle Scholar
  201. Suman A, Yadav AN, Verma P (2016b) Endophytic microbes in crops: diversity and beneficial impact for sustainable agriculture. In: Singh DP, Abhilash P, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity, research perspectives. Springer-Verlag, New Delhi, pp 117–143.  https://doi.org/10.1007/978-81-322-2647-5_7 CrossRefGoogle Scholar
  202. Sun JF, Lin X, Zhou XF, Wan J, Zhang T, Yang B, Yang XW, Tu Z, Liu Y (2014) Pestalols A–E, new alkenyl phenol and benzaldehyde derivatives from endophytic fungus Pestalotiopsis sp. AcBC2 isolated from the Chinese mangrove plant Aegiceras corniculatum. J Antibiot 67:451–457PubMedCrossRefPubMedCentralGoogle Scholar
  203. Suyal DC, Yadav A, Shouche Y, Goel R (2015) Bacterial diversity and community structure of Western Indian Himalayan red kidney bean (Phaseolus vulgaris) rhizosphere as revealed by 16S rRNA gene sequences. Biologia 70:305–313CrossRefGoogle Scholar
  204. Šašek V, Cajthaml T, Bhatt M (2003) Use of fungal technology in soil remediation: a case study. Water Air Soil Pollut Focus 3:5–14CrossRefGoogle Scholar
  205. Šišić A, Baćanović J, Finckh MR (2017) Endophytic Fusarium equiseti stimulates plant growth and reduces root rot disease of pea (Pisum sativum L.) caused by Fusarium avenaceum and Peyronellaea pinodella. Eur J Plant Pathol 148:271–282CrossRefGoogle Scholar
  206. Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459CrossRefGoogle Scholar
  207. Tariq M, Hameed S, Yasmeen T, Zahid M, Zafar M (2014) Molecular characterization and identification of plant growth promoting endophytic bacteria isolated from the root nodules of pea (Pisum sativum L.). World J Microbiol Biotechnol 30:719–725PubMedCrossRefPubMedCentralGoogle Scholar
  208. Tenguria RK, Khan FN, Quereshi S (2011) Endophytes-mines of pharmacological therapeutics. World J Sci Technol 1:127–149Google Scholar
  209. Thanh DTN, Diep CN (2014) Isolation, characterization and identification of endophytic bacteria in maize (Zea mays L.) cultivated on Acrisols of the Southeast of Vietnam. Am J Life Sci 2:224–233CrossRefGoogle Scholar
  210. Tian X, Cao L, Tan H, Zeng Q, Jia Y, Han W, Zhou S (2004) Study on the communities of endophytic fungi and endophytic actinomycetes from rice and their antipathogenic activities in vitro. World J Microbiol Biotechnol 20:303–309CrossRefGoogle Scholar
  211. Tian LS, Dai C, Zhao Y, Zhao M, Yong Y, Wang X (2007) The degradation of phenanthrene by endophytic fungi Phomopsis sp. single and co-cultured with rice. China Environ Sci 27:757–762Google Scholar
  212. Tian J, Fu L, Zhang Z, Dong X, Xu D, Mao Z, Liu Y, Lai D, Zhou L (2017) Dibenzo-α-pyrones from the endophytic fungus Alternaria sp. Samif01: isolation, structure elucidation, and their antibacterial and antioxidant activities. Nat Prod Res 31:387–396PubMedCrossRefPubMedCentralGoogle Scholar
  213. Timmusk S, Behers L, Muthoni J, Muraya A, Aronsson A-C (2017) Perspectives and challenges of microbial application for crop improvement. Front Plant Sci 8:49PubMedPubMedCentralCrossRefGoogle Scholar
  214. Tiwari R, Rana C (2015) Plant secondary metabolites: a review. Int J Eng Res Gen Sci 3:661–670Google Scholar
  215. Tiwari VK, Rawat N, Neelam K, Kumar S, Randhawa GS, Dhaliwal HS (2010) Substitutions of 2S and 7U chromosomes of Aegilops kotschyi in wheat enhance grain iron and zinc concentration. Theor Appl Genet 121:259–269PubMedCrossRefPubMedCentralGoogle Scholar
  216. Tomita F (2003) Endophytes in Southeast Asia and Japan: their taxonomic diversity and potential applications. Fungal Divers 14:187–204Google Scholar
  217. Torres M, Dolcet MM, Sala N, Canela R (2003) Endophytic fungi associated with Mediterranean plants as a source of mycelium-bound lipases. J Agric Food Chem 51:3328–3333PubMedCrossRefPubMedCentralGoogle Scholar
  218. UmaMaheswari T, Anbukkarasi K, Hemalatha T, Chendrayan K (2013) Studies on phytohormone producing ability of indigenous endophytic bacteria isolated from tropical legume crops. Int J Curr Microbiol Appl Sci 2:127–136Google Scholar
  219. Uzma F, Hashem A, Murthy N, Mohan HD, Kamath PV, Singh BP, Venkataramana M, Gupta VK, Siddaiah CN, Chowdappa S, Alqaeawi AA, Abd Allah EF (2018) Endophytic fungi—alternative sources of cytotoxic compounds: a review. Front Pharmacol 9(309):1–37.  https://doi.org/10.3389/fphar.2018.00309
  220. Vacheron J, Desbrosses G, Bouffaud M-L, Touraine B, Moënne-Loccoz Y, Muller D, Legendre L, Wisniewski-Dyé F, Prigent-Combaret C (2013) Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci 4:356PubMedPubMedCentralCrossRefGoogle Scholar
  221. Vallad GE, Goodman RM (2004) Systemic acquired resistance and induced systemic resistance in conventional agriculture. Crop Sci 44:1920–1934CrossRefGoogle Scholar
  222. Verma V, Singh S, Prakash S (2011) Bio-control and plant growth promotion potential of siderophore producing endophytic Streptomyces from Azadirachta indica A. Juss. J Basic Microbiol 51:550–556PubMedCrossRefPubMedCentralGoogle Scholar
  223. Verma P, Yadav AN, Khannam KS, Panjiar N, Kumar S, Saxena AK, Suman A (2015a) Assessment of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with wheat (Triticum aestivum) from the northern hills zone of India. Ann Microbiol 65:1885–1899CrossRefGoogle Scholar
  224. Verma P, Yadav AN, Shukla L, Saxena AK, Suman A (2015b) Alleviation of cold stress in wheat seedlings by Bacillus amyloliquefaciens IARI-HHS2-30, an endophytic psychrotolerant K-solubilizing bacterium from NW Indian Himalayas. Natl J Life Sci 12:105–110Google Scholar
  225. Verma P, Yadav AN, Shukla L, Saxena AK, Suman A (2015c) Hydrolytic enzymes production by thermotolerant Bacillus altitudinis IARI-MB-9 and Gulbenkiania mobilis IARI-MB-18 isolated from Manikaran hot springs. Int J Adv Res 3:1241–1250Google Scholar
  226. Verma P, Yadav AN, Khannam KS, Kumar S, Saxena AK, Suman A (2016a) Molecular diversity and multifarious plant growth promoting attributes of bacilli associated with wheat (Triticum aestivum L.) rhizosphere from six diverse agro-ecological zones of India. J Basic Microbiol 56:44–58PubMedCrossRefPubMedCentralGoogle Scholar
  227. Verma P, Yadav AN, Khannam KS, Mishra S, Kumar S, Saxena AK, Suman A (2016b) Appraisal of diversity and functional attributes of thermotolerant wheat associated bacteria from the peninsular zone of India. Saudi J Biol Sci.  https://doi.org/10.1016/j.sjbs.2016.01.042
  228. Verma P, Yadav AN, Kumar V, Kumar K, Dhaliwal HS (2017a) Microbes mediated biofortification of wheat (Triticum aestivum L.) for micronutrients by Fe-chelating and Zn-solubilizing bacteria. In: Proceeding of national conference on advances in food science and technology, pp 199–200Google Scholar
  229. Verma P, Yadav AN, Kumar V, Singh DP, Saxena AK (2017b) Beneficial plant-microbes interactions: biodiversity of microbes from diverse extreme environments and its impact for crops improvement. In: Singh DP, Singh HB, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives. Springer Nature, Singapore, pp 543–580.  https://doi.org/10.1007/978-981-10-6593-4_22 CrossRefGoogle Scholar
  230. Vinale F, Nicoletti R, Lacatena F, Marra R, Sacco A, Lombardi N, d’Errico G, Digilio M, Lorito M, Woo S (2017) Secondary metabolites from the endophytic fungus Talaromyces pinophilus. Nat Prod Res 31:1778.  https://doi.org/10.1080/14786419.2017.1290624 CrossRefPubMedPubMedCentralGoogle Scholar
  231. Wakelin SA, Warren RA, Harvey PR, Ryder MH (2004) Phosphate solubilization by Penicillium spp. closely associated with wheat roots. Biol Fertil Soils 40:36–43CrossRefGoogle Scholar
  232. Wang B, Qiu Y-L (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363PubMedCrossRefPubMedCentralGoogle Scholar
  233. Wang F, Jiao R, Cheng A, Tan S, Song Y (2007) Antimicrobial potentials of endophytic fungi residing in Quercus variabilis and brefeldin A obtained from Cladosporium sp. World J Microbiol Biotechnol 23:79–83CrossRefGoogle Scholar
  234. Wang Y, Niu S, Liu S, Guo L, Che Y (2010) The first naturally occurring thiepinols and thienol from an endolichenic fungus Coniochaeta sp. Org Lett 12:5081–5083PubMedCrossRefPubMedCentralGoogle Scholar
  235. Wang M, Zheng Q, Shen Q, Guo S (2013a) The critical role of potassium in plant stress response. Int J Mol Sci 14:7370–7390PubMedPubMedCentralCrossRefGoogle Scholar
  236. Wang QX, Bao L, Yang XL, Liu DL, Guo H, Dai HQ, Song FH, Zhang LX, Guo LD, Li SJ (2013b) Ophiobolins P–T, five new cytotoxic and antibacterial sesterterpenes from the endolichenic fungus Ulocladium sp. Fitoterapia 90:220–227PubMedCrossRefPubMedCentralGoogle Scholar
  237. Wang Y, Yang X, Zhang X, Dong L, Zhang J, Wei Y, Feng Y, Lu L (2014) Improved plant growth and Zn accumulation in grains of rice (Oryza sativa L.) by inoculation of endophytic microbes isolated from a Zn Hyperaccumulator, Sedum alfredii H. J Agric Food Chem 62:1783–1791PubMedCrossRefPubMedCentralGoogle Scholar
  238. White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets–iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:49–84PubMedCrossRefPubMedCentralGoogle Scholar
  239. Wilson D (1995) Endophyte: The Evolution of a Term, and Clarification of Its Use and Definition. Oikos 73 (2):274CrossRefGoogle Scholar
  240. Wu SH, Chen YW, Shao SC, Wang LD, Yu Y, Li ZY, Yang LY, Li SL, Huang R (2009) Two new solanapyrone analogues from the endophytic fungus Nigrospora sp. YB-141 of Azadirachta indica. Chem Biodivers 6:79–85PubMedCrossRefPubMedCentralGoogle Scholar
  241. Wulandari RS, Suryantini R (2018) Growth of Albizia in Vitro: Endophytic Fungi as Plant Growth Promote of Albizia. Int Sch Sci Res Inn 12(1)8Google Scholar
  242. Xing Y-M, Chen J, Cui J-L, Chen X-M, Guo S-X (2011) Antimicrobial activity and biodiversity of endophytic fungi in Dendrobium devonianum and Dendrobium thyrsiflorum from Vietman. Curr Microbiol 62:1218–1224PubMedCrossRefPubMedCentralGoogle Scholar
  243. Xu L-L, Han T, Wu J-Z, Zhang Q-Y, Zhang H, Huang B-K, Rahman K, Qin L-P (2009) Comparative research of chemical constituents, antifungal and antitumor properties of ether extracts of Panax ginseng and its endophytic fungus. Phytomedicine 16:609–616PubMedCrossRefPubMedCentralGoogle Scholar
  244. Xu Y-G, Wang B-S, Yu J-J, Ao G-M, Zhao Q (2010) Cloning and characterisation of ZmZLP1, a gene encoding an endoplasmic reticulum-localised zinc transporter in Zea mays. Funct Plant Biol 37:194–205CrossRefGoogle Scholar
  245. Xu L, Meng W, Cao C, Wang J, Shan W, Wang Q (2015) Antibacterial and antifungal compounds from marine fungi. Mar Drug 13:3479–3513CrossRefGoogle Scholar
  246. Yadav AN (2009) Studies of Methylotrophic Community from the Phyllosphere and Rhizosphere of Tropical Crop Plants. M.Sc. thesis, Bundelkhand University, p 66.  https://doi.org/10.13140/2.1.5099.0888
  247. Yadav AN (2015) Bacterial diversity of cold deserts and mining of genes for low temperature tolerance. Ph.D. thesis, Indian Agricultural Research Institute, New Delhi and Birla Institute of Technology, Ranchi. p 234.  https://doi.org/10.13140/RG.2.1.2948.1283/2
  248. Yadav AN (2017) Agriculturally important microbiomes: biodiversity and multifarious PGP attributes for amelioration of diverse abiotic stresses in crops for sustainable agriculture. Biomed J Sci Tech Res 1:1–4Google Scholar
  249. Yadav AN, Sachan SG, Verma P, Saxena AK (2015a) Prospecting cold deserts of north western Himalayas for microbial diversity and plant growth promoting attributes. J Biosci Bioeng 119:683–693PubMedCrossRefPubMedCentralGoogle Scholar
  250. Yadav AN, Sharma D, Gulati S, Singh S, Kaushik R, Dey R, Pal KK, Saxena AK (2015b) Haloarchaea endowed with phosphorus solubilization attribute implicated in phosphorus cycle. Sci Rep 5:12293.  https://doi.org/10.1038/srep12293 CrossRefPubMedPubMedCentralGoogle Scholar
  251. Yadav AN, Sachan SG, Verma P, Tyagi SP, Kaushik R, Saxena AK (2015c) Culturable diversity and functional annotation of psychrotrophic bacteria from cold desert of Leh Ladakh (India). World Journal of Microbiology and Biotechnology 31(1):95–108PubMedCrossRefPubMedCentralGoogle Scholar
  252. Yadav AN, Verma P, Kumar M, Pal KK, Dey R, Gupta A, Padaria JC, Gujar GT, Kumar S, Suman A, Prasanna R, Saxena AK (2015d) Diversity and phylogenetic profiling of niche-specific Bacilli from extreme environments of India. Annals of Microbiology 65(2):611–629CrossRefGoogle Scholar
  253. Yadav AN, Rana KL, Kumar V, Dhaliwal HS (2016a) Phosphorus solubilizing endophytic microbes: potential application for sustainable agriculture. EU Voice 2:21–22Google Scholar
  254. Yadav AN, Sachan SG, Verma P, Kaushik R, Saxena AK (2016b) Cold active hydrolytic enzymes production by psychrotrophic bacilli isolated from three sub-glacial lakes of NW Indian Himalayas. J Basic Microbiol 56:294–307PubMedCrossRefPubMedCentralGoogle Scholar
  255. Yadav AN, Verma P, Kour D, Rana KL, Kumar V, Singh B, Chauahan VS, Sugitha T, Saxena AK, Dhaliwal HS (2017a) Plant microbiomes and its beneficial multifunctional plant growth promoting attributes. Int J Environ Sci Nat Resour 3:1–8.  https://doi.org/10.19080/IJESNR.2017.03.555601 CrossRefGoogle Scholar
  256. Yadav AN, Verma P, Kumar V, Sachan SG, Saxena AK (2017b) Extreme cold environments: a suitable niche for selection of novel psychrotrophic microbes for biotechnological applications. Adv Biotechnol Microbiol 2:1–4CrossRefGoogle Scholar
  257. Yadav AN, Verma P, Sachan SG, Kaushik R, Saxena AK (2017c) Psychrotrophic microbiomes: molecular diversity and beneficial role in plant growth promotion and soil health. In: Panpatte DG, Jhala YK, Shelat HN, Vyas RV (eds) Microorganisms for green revolution, Microbes for sustainable agro-ecosystem, vol 2. Springer Singapore, Singapore, pp 197–240.  https://doi.org/10.1007/978-981-10-7146-1_11 CrossRefGoogle Scholar
  258. Yadav AN, Verma P, Sachan SG, Saxena AK (2017d) Biodiversity and biotechnological applications of psychrotrophic microbes isolated from Indian Himalayan regions. EC Microbiol ECO 01:48–54Google Scholar
  259. Yadav AN, Kumar V, Prasad R, Saxena AK, Dhaliwal HS (2018a) Microbiome in crops: diversity, distribution and potential role in crops improvements. In: Prasad R, Gill SS, Tuteja N (eds) Crop improvement through microbial biotechnology. Elsevier, New York, pp 305–332CrossRefGoogle Scholar
  260. Yadav AN, Verma P, Kumar S, Kumar V, Kumar M, Singh BP, Saxena AK, Dhaliwal HS (2018b) Actinobacteria from rhizosphere: molecular diversity, distributions and potential biotechnological applications. In: Singh BP, Gupta VK, Passari AK (eds) New and future developments in microbial biotechnology and bioengineering. Elsevier, New York, pp 13–41.  https://doi.org/10.1016/B978-0-444-63994-3.00002-3 CrossRefGoogle Scholar
  261. Yadav AN, Verma P, Kumar V, Sangwan P, Mishra S, Panjiar N, Gupta VK, Saxena AK (2018c) Biodiversity of the genus Penicillium in different habitats. In: Gupta VK, Rodriguez-Couto S (eds) New and future developments in microbial biotechnology and bioengineering, Penicillium system properties and applications. Elsevier, Amsterdam, pp 3–18.  https://doi.org/10.1016/B978-0-444-63501-3.00001-6 CrossRefGoogle Scholar
  262. Yang JW, Yu SH, Ryu C-M (2009) Priming of defense-related genes confers root-colonizing bacilli-elicited induced systemic resistance in pepper. Plant Pathol J 25:389–399CrossRefGoogle Scholar
  263. You YH, Yoon H, Kang SM, Woo JR, Choo YS, Lee IJ, Shin JH, Kim JG (2013) Cadophora malorum Cs-8-1 as a new fungal strain producing gibberellins isolated from Calystegia soldanella. J Basic Microbiol 53:630–634PubMedCrossRefPubMedCentralGoogle Scholar
  264. Yuan ZL, Zhang CL, Lin F, Kubicek CP (2010) Identity, diversity, and molecular phylogeny of the endophytic mycobiota in the roots of rare wild rice (Oryza granulate) from a nature reserve in Yunnan, China. Appl Environ Microbiol 76:1642–1652PubMedCrossRefPubMedCentralGoogle Scholar
  265. Yuan C, Wang HY, Wu CS, Jiao Y, Li M, Wang YY, Wang SQ, Zhao ZT, Lou HX (2013) Austdiol, fulvic acid and citromycetin derivatives from an endolichenic fungus, Myxotrichum sp. Phytochem Lett 6:662–666CrossRefGoogle Scholar
  266. Yadav AN (2018) Biodiversity and biotechnological applications of host-specific endophytic fungi for sustainable agriculture and allied sectors. Acta Scientific Microbiology 1:01–05.Google Scholar
  267. Yadav AN, Yadav N (2018a) Stress-adaptive microbes for plant growth promotion and alleviation of drought stress in plants. Acta Scientific Agriculture 2:85–88.Google Scholar
  268. Yadav N, Yadav A (2018b) Biodiversity and biotechnological applications of novel plant growth promoting methylotrophs. J Appl Biotechnol Bioeng 5:342–344.Google Scholar
  269. Zhang HW, Song YC, Tan RX (2006) Biology and chemistry of endophytes. Nat Prod Rep 23:753–771CrossRefGoogle Scholar
  270. Zhang HW, Huang WY, Chen JR, Yan WZ, Xie DQ, Tan RX (2008) Cephalosol: an antimicrobial metabolite with an unprecedented skeleton from endophytic Cephalosporium acremonium IFB-E007. Chem Eur J 14:10670–10674PubMedCrossRefPubMedCentralGoogle Scholar
  271. Zhang F, Liu S, Lu X, Guo L, Zhang H, Che Y (2009) Allenyl and alkynyl phenyl ethers from the endolichenic fungus Neurospora terricola. J Nat Prod 72:1782–1785PubMedCrossRefPubMedCentralGoogle Scholar
  272. Zhang F, Shen J, Zhang J, Zuo Y, Li L, Chen X (2010) Rhizosphere processes and management for improving nutrient use efficiency and crop productivity: implications for China. In: Advances in agronomy, vol 107. Elsevier, pp 1–32Google Scholar
  273. Zhang F, Li L, Niu S, Si Y, Guo L, Jiang X, Che Y (2012) A thiopyranchromenone and other chromone derivatives from an endolichenic fungus, Preussia africana. J Nat Prod 75:230–237PubMedCrossRefPubMedCentralGoogle Scholar
  274. Zheng Z, Obbard JP (2000) Removal of polycyclic aromatic hydrocarbons from soil using surfactant and the white rot fungus Phanerochaete chrysosporium. J Chem Technol Biotechnol 75:1183–1189CrossRefGoogle Scholar
  275. Zheng CJ, Xu LL, Li YY, Han T, Zhang QY, Ming QL, Rahman K, Qin LP (2013) Cytotoxic metabolites from the cultures of endophytic fungi from Panax ginseng. Appl Microbiol Biotechnol 97:7617–7625PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Kusam Lata Rana
    • 1
  • Divjot Kour
    • 1
  • Imran Sheikh
    • 1
  • Neelam Yadav
    • 2
  • Ajar Nath Yadav
    • 1
    Email author
  • Vinod Kumar
    • 1
  • Bhim Pratap Singh
    • 3
  • Harcharan Singh Dhaliwal
    • 1
  • Anil Kumar Saxena
    • 4
  1. 1.Department of BiotechnologyAkal College of Agriculture, Eternal UniversityBaru SahibIndia
  2. 2.Gopi Nath P.G. College, VBSP UniversityGhazipurIndia
  3. 3.Molecular Microbiology and Systematics LaboratoryDepartment of Biotechnology, Mizoram UniversityAizawlIndia
  4. 4.ICAR-National Bureau of Agriculturally Important MicroorganismsMauIndia

Personalised recommendations