Bioprospecting for Fungal-Endophyte-Derived Natural Products for Drug Discovery

  • Priyanka Saha
  • Anupam Das TalukdarEmail author
  • Manabendra Dutta Choudhury
  • Deepa Nath
Part of the Fungal Biology book series (FUNGBIO)


Fungal endophytes are epitomes of various secondary metabolites and natural products, which have a place in the medical and industrial arenas. They comprise components of plant microecosystems that dwell asymptomatically and symbiotically within plant tissue systems. Certain contemporaneous endophytes and their specific hosts have established a unique correlation that can expressively control plant metabolites and affect the physicochemical properties of medicinal-plant-based crude drugs. Currently, shifting lifestyles have led to a rise in maladies like pulmonary disease, asthma, cardiovascular diseases, and cancer. Though several new medicines have been introduced to the market, the development of resistance to these drugs has become increasingly evident, especially in patients suffering from chronic disease. Synthetic drug therapy has proven to be uncertain, so there is an overall need to develop new protective agents from microorganisms that are highly effective with minimal side effects. Natural products thus have always been a choice for the isolation of novel bioactive molecules for diverse therapeutic applications. It has been determined that nearly 20, 00,000 natural products are of microbial origin. This chapter will thus provide an insight into the novel aspects of some natural products of fungal endophytic origin that may have significant therapeutic potential in disease control and eventually facilitate product discovery with a focus on understanding the interface between endophytic fungi and therapeutic plants. Such an understanding can lead to a more widespread use of superior plant-based drugs in the near future.



The authors are grateful to DBT (Govt. of India) Sponsored Bioinformatics Infrastructure Facility (BIF) of Assam University and Delcon’s e-Journal Access Facility.

Conflict of interest: The authors declare that there is no conflict of interests regarding the publication of this book chapter.


  1. Akello J, Dubois T, Gold CS, Coyne D, Nakavuma J, Paparu P (2007) Beauveria bassiana (Balsamo) Vuillemin as an endophyte in tissue culture banana (Musa spp.). J Invertebr Pathol 96(1):34–42PubMedCrossRefGoogle Scholar
  2. Ali S, Charles TC, Glick BR (2014) Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase. Plant Physiol Biochem 80:160–167PubMedCrossRefGoogle Scholar
  3. Aly AH, Debbab A, Kjer J, Proksch P (2010) Fungal endophytes from higher plants: a prolific source of phytochemicals and other bioactive natural products. Fungal Divers 41(1):1–16CrossRefGoogle Scholar
  4. Aly AH, Debbab A, Proksch P (2011) Fungal endophytes: unique plant inhabitants with great promises. Appl Microbiol Biotechnol 90(6):1829–1845PubMedCrossRefGoogle Scholar
  5. Aly A, Debbab A, Proksch P (2013) Fungal endophytes—secret producers of bioactive plant metabolites. Pharmazie 68(7):499–505PubMedGoogle Scholar
  6. Arora J, Ramawat K (2017) An introduction to endophytes. In: Endophytes: biology and biotechnology. Springer, pp 1–23Google Scholar
  7. Bacon CW, White J (2000) Microbial endophytes. CRC Press, Boca RatonGoogle Scholar
  8. Bae H, Sicher RC, Kim MS, Kim S-H, Strem MD, Melnick RL, Bailey BA (2009) The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao. J Exp Bot 60(11):3279–3295PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bashyal B, Li J, Strobel G, Hess W, Sidhu R (1999) Seimatoantlerium nepalense, an endophytic taxol producing coelomycete from Himalayan yew (Taxus wallachiana). Mycotaxon 72:33–42Google Scholar
  10. Blankenship JD, Spiering MJ, Wilkinson HH, Fannin FF, Bush LP, Schardl CL (2001) Production of loline alkaloids by the grass endophyte, Neotyphodium uncinatum, in defined media. Phytochemistry 58(3):395–401PubMedCrossRefGoogle Scholar
  11. Caboni P, Ntalli N, Bueno C, Alche L (2012) Isolation and chemical characterization of components with biological activity extracted from Azadirachta Indica and Melia Azedarach. In: Emerging trends in dietary components for preventing and combating disease. ACS Publications, pp 51–77Google Scholar
  12. Cao L, Qiu Z, You J, Tan H, Zhou S (2004) Isolation and characterization of endophytic Streptomyces strains from surface-sterilized tomato (Lycopersicon esculentum) roots. Lett Appl Microbiol 39(5):425–430PubMedCrossRefGoogle Scholar
  13. Casella TM, Eparvier V, Mandavid H, Bendelac A, Odonne G, Dayan L, Duplais C, Espindola LS, Stien D (2013) Antimicrobial and cytotoxic secondary metabolites from tropical leaf endophytes: isolation of antibacterial agent pyrrocidine C from Lewia infectoria SNB-GTC2402. Phytochemistry 96:370–377PubMedCrossRefGoogle Scholar
  14. Chakravarthi B, Das P, Surendranath K, Karande AA, Jayabaskaran C (2008) Production of paclitaxel by Fusarium solani isolated from Taxus celebica. J Biosci 33(2):259PubMedCrossRefGoogle Scholar
  15. Chithra S, Jasim B, Sachidanandan P, Jyothis M, Radhakrishnan E (2014) Piperine production by endophytic fungus Colletotrichum gloeosporioides isolated from Piper nigrum. Phytomedicine 21(4):534–540PubMedCrossRefGoogle Scholar
  16. Debbab A, Aly AH, Proksch P (2012) Endophytes and associated marine derived fungi—ecological and chemical perspectives. Fungal Divers 57(1):45–83CrossRefGoogle Scholar
  17. Deshmukh SK, Verekar SA, Bhave SV (2015) Endophytic fungi: a reservoir of antibacterials. Front Microbiol 5:715PubMedPubMedCentralCrossRefGoogle Scholar
  18. Elumalai E, Chandrasekaran N, Thirumalai T, Sivakumar C, Therasa SV, David E (2009) Achyranthes aspera leaf extracts inhibited fungal growth. Int J Pharm Tech Res 1(4):1576–1579Google Scholar
  19. Eyberger AL, Dondapati R, Porter JR (2006) Endophyte fungal isolates from Podophyllum peltatum produce podophyllotoxin. J Nat Prod 69(8):1121–1124PubMedCrossRefGoogle Scholar
  20. Faeth SH, Fagan WF (2002) Fungal endophytes: common host plant symbionts but uncommon mutualists. Integr Comp Biol 42(2):360–368PubMedCrossRefGoogle Scholar
  21. Firáková S, Šturdíková M, Múčková M (2007) Bioactive secondary metabolites produced by microorganisms associated with plants. Biologia 62(3):251–257CrossRefGoogle Scholar
  22. Flores-Bustamante ZR, Rivera-Orduña FN, Martínez-Cárdenas A, Flores-Cotera LB (2010) Microbial paclitaxel: advances and perspectives. J Antibiot 63(8):460PubMedCrossRefGoogle Scholar
  23. Gangadevi V, Muthumary J (2008) A simple and rapid method for the determination of taxol produced by fungal endophytes from medicinal plants using high performance thin layer chromatography. Chin J Chromatogr 26(1):50–55Google Scholar
  24. Gunatilaka AL (2006) Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implications of their occurrence. J Nat Prod 69(3):509–526PubMedPubMedCentralCrossRefGoogle Scholar
  25. Gurib-Fakim A (2006) Medicinal plants: traditions of yesterday and drugs of tomorrow. Mol Asp Med 27(1):1–93CrossRefGoogle Scholar
  26. Hamayun M, Khan SA, Ahmad N, Tang D-S, Kang S-M, Na C-I, Sohn E-Y, Hwang Y-H, Shin D-H, Lee B-H (2009) Cladosporium sphaerospermum as a new plant growth-promoting endophyte from the roots of Glycine max (L.) Merr. World J Microbiol Biotechnol 25(4):627–632CrossRefGoogle Scholar
  27. Helander M, Ahlholm J, Sieber T, Hinneri S, Saikkonen K (2007) Fragmented environment affects birch leaf endophytes. New Phytol 175(3):547–553PubMedCrossRefGoogle Scholar
  28. Huang W-Y, Cai Y-Z, Hyde KD, Corke H, Sun M (2007) Endophytic fungi from Nerium oleander L (Apocynaceae): main constituents and antioxidant activity. World J Microbiol Biotechnol 23(9):1253–1263CrossRefGoogle Scholar
  29. Kaul S, Sharma T, Dhar MK (2016) “Omics” Tools for Better Understanding the Plant–Endophyte Interactions. Front Plant Sci 7:955PubMedPubMedCentralCrossRefGoogle Scholar
  30. Kogel K-H, Franken P, Hückelhoven R (2006) Endophyte or parasite–what decides? Curr Opin Plant Biol 9(4):358–363PubMedCrossRefGoogle Scholar
  31. Kour A, Shawl AS, Rehman S, Sultan P, Qazi PH, Suden P, Khajuria RK, Verma V (2008) Isolation and identification of an endophytic strain of Fusarium oxysporum producing podophyllotoxin from Juniperus recurva. World J Microbiol Biotechnol 24(7):1115–1121CrossRefGoogle Scholar
  32. Kumar A, Patil D, Rajamohanan PR, Ahmad A (2013) Isolation, purification and characterization of vinblastine and vincristine from endophytic fungus Fusarium oxysporum isolated from Catharanthus roseus. PLoS One 8(9):e71805PubMedPubMedCentralCrossRefGoogle Scholar
  33. Kusari S, Lamshöft M, Spiteller M (2009) Aspergillus fumigatus Fresenius, an endophytic fungus from Juniperus communis L. Horstmann as a novel source of the anticancer pro-drug deoxypodophyllotoxin. J Appl Microbiol 107(3):1019–1030PubMedCrossRefGoogle Scholar
  34. Kusari S, Zuhlke S, Spiteller M (2011) Effect of artificial reconstitution of the interaction between the plant Camptotheca acuminata and the fungal endophyte Fusarium solani on camptothecin biosynthesis. J Nat Prod 74(4):764–775PubMedCrossRefGoogle Scholar
  35. Kusari S, Hertweck C, Spiteller M (2012) Chemical ecology of endophytic fungi: origins of secondary metabolites. Chem Biol 19(7):792–798PubMedCrossRefGoogle Scholar
  36. Lederberg J, Harrison PF (1998) Antimicrobial resistance: issues and options. National Academies Press, Washington, DCGoogle Scholar
  37. Lehtonen P, Helander M, Saikkonen K (2005) Are endophyte-mediated effects on herbivores conditional on soil nutrients? Oecologia 142(1):38–45PubMedCrossRefGoogle Scholar
  38. Lingfei L, Anna Y, Zhiwei Z (2005) Seasonality of arbuscular mycorrhizal symbiosis and dark septate endophytes in a grassland site in southwest China. FEMS Microbiol Ecol 54(3):367–373PubMedCrossRefGoogle Scholar
  39. Liu CH, Zou WX, Lu H, Tan RX (2001) Antifungal activity of Artemisia annua endophyte cultures against phytopathogenic fungi. J Biotechnol 88(3):277–282PubMedCrossRefGoogle Scholar
  40. London DS (2012) Diet as a double-edged sword: the pharmacological properties of food among the Waorani Hunter-Gatherers of Amazonian Ecuador. Arizona State UniversityGoogle Scholar
  41. Ludwig-Müller J (2015) Plants and endophytes: equal partners in secondary metabolite production? Biotechnol Lett 37(7):1325–1334PubMedCrossRefGoogle Scholar
  42. Marchart K (2011) Qualitative and quantitative analysis of Chinese medical herbs for the prevention and therapy of acute myocardial infarction and diabetes. UniwienGoogle Scholar
  43. Mishra VK, Passari AK, Chandra P, Leo VV, Kumar B, Gupta VK, Singh BP (2017a) Determination and production of antimicrobial compounds by Aspergillus clavatonanicus strain MJ31, an endophytic fungus from Mirabilis jalapa L. using UPLC-ESI-MS/MS and TD GC-MS. PLoS One 12(10):1–24. CrossRefGoogle Scholar
  44. Mishra VK, Passari AK, Leo VV, Singh BP (2017b) Molecular diversity and detection of endophytic fungi based on their antimicrobial biosynthetic genes. In: Singh BP, Gupta VK (eds) Molecular markers in mycology, fungal biology. Springer, Cham, Switzerland, pp 1–35. CrossRefGoogle Scholar
  45. Nicoletti R, Fiorentino A (2015) Plant bioactive metabolites and drugs produced by endophytic fungi of Spermatophyta. Agriculture 5(4):918–970CrossRefGoogle Scholar
  46. Omeje EO, Ahomafor JE, Onyekaba TU, Monioro PO, Nneka I, Onyeloni S, Chime C, Eboka JC (2017) Endophytic fungi as alternative and reliable sources for potent anticancer agents. In: Natural products and cancer drug discovery. InTechGoogle Scholar
  47. Orole O, Adejumo T (2009) Activity of fungal endophytes against four maize wilt pathogens. Afr J Microbiol Res 3(12):969–973Google Scholar
  48. Palombo EA (2012) Endophytes from Medicinal Plants as Novel Sources of Bioactive Compounds. In: Medicinal plants: biodiversity and drugs. pp 355–411Google Scholar
  49. Pan F, Su X, Hu B, Yang N, Chen Q, Wu W (2015) Fusarium redolens 6WBY3, an endophytic fungus isolated from Fritillaria unibracteata var. wabuensis, produces peimisine and imperialine-3β-d-glucoside. Fitoterapia 103:213–221PubMedCrossRefGoogle Scholar
  50. Pandey PK, Singh S, Yadav RNS, Singh AK, Singh MCK (2014) Fungal endophytes: promising tools for pharmaceutical science. Int J Pharm Sci Rev Res 25(2):128–138Google Scholar
  51. Porras-Alfaro A, Bayman P (2011) Hidden fungi, emergent properties: endophytes and microbiomes. Annu Rev Phytopathol 49:291–315PubMedCrossRefGoogle Scholar
  52. Prakash V (2015) Endophytic fungi as resource of bioactive compounds. Int J Pharm Bio Sci 6:887–898Google Scholar
  53. Priti V, Ramesha B, Singh S, Ravikanth G, Ganeshaiah K, Suryanarayanan T, Uma Shaanker R (2009) How promising are endophytic fungi as alternative sources of plant secondary metabolites? Curr Sci 97(4):477–478Google Scholar
  54. Puri SC, Nazir A, Chawla R, Arora R, Riyaz-ul-Hasan S, Amna T, Ahmed B, Verma V, Singh S, Sagar R (2006) The endophytic fungus Trametes hirsuta as a novel alternative source of podophyllotoxin and related aryl tetralin lignans. J Biotechnol 122(4):494–510PubMedCrossRefGoogle Scholar
  55. Redman RS, Sheehan KB, Stout RG, Rodriguez RJ, Henson JM (2002) Thermotolerance generated by plant/fungal symbiosis. Science 298(5598):1581–1581PubMedCrossRefGoogle Scholar
  56. Rehman S, Shawl A, Kour A, Andrabi R, Sudan P, Sultan P, Verma V, Qazi G (2008) An endophytic Neurospora sp. from Nothapodytes foetida producing camptothecin. Appl Biochem Microbiol 44(2):203–209CrossRefGoogle Scholar
  57. Rodriguez R, White J Jr, Arnold A, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182(2):314–330PubMedCrossRefGoogle Scholar
  58. Santoyo G, Moreno-Hagelsieb G, Orozco-Mosqueda Mdel C, Glick BR (2016) Plant growth-promoting bacterial endophytes. Microbiol Res 183:92–99PubMedCrossRefGoogle Scholar
  59. Schiff PL Jr (2002) Opium and its alkaloids. Am J Pharm Educ 66(2):186Google Scholar
  60. Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109(6):661–686PubMedCrossRefGoogle Scholar
  61. Schulz B, Boyle C, Draeger S, Römmert A-K, Krohn K (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res 106(9):996–1004CrossRefGoogle Scholar
  62. Senthil Kumaran R, Muthumary J, Hur B (2008) Production of Taxol from Phyllosticta spinarum, an endophytic fungus of Cupressus sp. Eng Life Sci 8(4):438–446CrossRefGoogle Scholar
  63. Shah A, John Dar N, Parvaiz Hassan Q, Ahmad M (2016) Endophytes and Neurodegenerative diseases: a hope in desperation. CNS Neurol Disord Drug Targets 15(10):1231–1239PubMedCrossRefGoogle Scholar
  64. Shweta S, Zuehlke S, Ramesha B, Priti V, Kumar PM, Ravikanth G, Spiteller M, Vasudeva R, Shaanker RU (2010) Endophytic fungal strains of Fusarium solani, from Apodytes dimidiata E. Mey. ex Arn (Icacinaceae) produce camptothecin, 10-hydroxycamptothecin and 9-methoxycamptothecin. Phytochemistry 71(1):117–122PubMedCrossRefGoogle Scholar
  65. Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260(5105):214–216PubMedCrossRefGoogle Scholar
  66. Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67(4):491–502PubMedPubMedCentralCrossRefGoogle Scholar
  67. Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18(4):448–459PubMedCrossRefGoogle Scholar
  68. Vandenkoornhuyse P, Quaiser A, Duhamel M, Le Van A, Dufresne A (2015) The importance of the microbiome of the plant holobiont. New Phytol 206(4):1196–1206PubMedCrossRefGoogle Scholar
  69. Vesterlund S-R, Helander M, Faeth SH, Hyvönen T, Saikkonen K (2011) Environmental conditions and host plant origin override endophyte effects on invertebrate communities. Fungal Divers 47(1):109–118CrossRefGoogle Scholar
  70. Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Hückelhoven R, Neumann C, von Wettstein D (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci U S A 102(38):13386–13391PubMedPubMedCentralCrossRefGoogle Scholar
  71. Waqas M, Khan AL, Hamayun M, Shahzad R, Kang S-M, Kim J-G, Lee I-J (2015) Endophytic fungi promote plant growth and mitigate the adverse effects of stem rot: an example of Penicillium citrinum and Aspergillus terreus. J Plant Interact 10(1):280–287Google Scholar
  72. Wilson D (1995) Endophyte: the evolution of a term, and clarification of its use and definition. Oikos 73:274–276CrossRefGoogle Scholar
  73. Wink M (2008) Plant secondary metabolism: diversity, function and its evolution. Nat Prod Commun 3(8):1205–1216Google Scholar
  74. Yu H, Zhang L, Li L, Zheng C, Guo L, Li W, Sun P, Qin L (2010) Recent developments and future prospects of antimicrobial metabolites produced by endophytes. Microbiol Res 165(6):437–449PubMedCrossRefGoogle Scholar
  75. Yuan Z-L, Chen Y-C, Yang Y (2009) Diverse non-mycorrhizal fungal endophytes inhabiting an epiphytic, medicinal orchid (Dendrobium nobile): estimation and characterization. World J Microbiol Biotechnol 25(2):295CrossRefGoogle Scholar
  76. Zhang HW, Song YC, Tan RX (2006) Biology and chemistry of endophytes. Nat Prod Rep 23(5):753–771PubMedCrossRefGoogle Scholar
  77. Zhang F, Wang M, Zheng Y, Liu H, Zhang X, Wu S (2015) Isolation and characterzation of endophytic Huperzine A-producing fungi from Phlegmariurus phlegmaria. Microbiology 84(5):701–709CrossRefGoogle Scholar
  78. Zhao J, Zhou L, Wang J, Shan T, Zhong L, Liu X, Gao X (2010) Endophytic fungi for producing bioactive compounds originally from their host plants. Curr Res, Technol Educ Trop Appl Microbiol Microbial Biotechnol 1:567–576Google Scholar
  79. Zhao J, Shan T, Mou Y, Zhou L (2011) Plant-derived bioactive compounds produced by endophytic fungi. Mini Rev Med Chem 11(2):159–168PubMedCrossRefGoogle Scholar
  80. Zhou H, Wu S, Joo JY, Zhu S, Han DW, Lin T, Trauger S, Bien G, Yao S, Zhu Y (2009) Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4(5):381–384PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Priyanka Saha
    • 1
  • Anupam Das Talukdar
    • 1
    Email author
  • Manabendra Dutta Choudhury
    • 1
  • Deepa Nath
    • 2
  1. 1.Department of Life Science and BioinformaticsAssam UniversitySilcharIndia
  2. 2.Department of Botany and BiotechnologyKarimganj CollegeKarimganjIndia

Personalised recommendations