Antimycobacterial and Antiplasmodial Compounds Produced by Endophytic Fungi: An Overview

  • Mariana Costa Ferreira
  • Camila Rodrigues de Carvalho
  • Carlos Leomar Zani
  • Luiz Henrique RosaEmail author
Part of the Fungal Biology book series (FUNGBIO)


The search for new compounds that may be used in the treatment of such diseases as malaria and tuberculosis is essential. Malaria is an infectious disease caused by the genus Plasmodium and affects approximately 212 million people around the world. Tuberculosis is an equally deadly infectious disease caused mainly by Mycobacterium tuberculosis affecting 8.8 million people around the world in 2010. Endophytic microorganisms, those residing asymptomatically within plant tissues, include a high diversity of species associated with different plants around the world and have been studied for their ability to produce different bioactive secondary metabolites having significant potential against neglected diseases. These metabolites are vivid examples of an extraordinary range of molecular diversity, built from a variety of different biosynthetic pathways modulated by the environment, and a plethora of ecological and chemical interactions takes place between endophytes and their host. This chapter presents a vanguard overview of the potential of endophytic fungi as producers of metabolites with antimycobacterial and antiplasmodial activities.



Artemisinin-based combination therapy


Acquired immunodeficiency syndrome


Half maximal effective concentration


Half maximal inhibitory concentration


Multi drug-resistant


Minimum inhibitory concentration




World Health Organization






  1. Alvin A, Miller KI, Neilan BA (2014) Exploring the potential of endophytes from medicinal plants as sources of antimycobacterial compounds. Microbiol Res 169(7):483–495CrossRefGoogle Scholar
  2. Brundrett MC (2006) Understanding the roles of multifunctional mycorrhizal and endophytic fungi. In: BJE S, CJC B, Sieber TN (eds) Microbial root endophytes. Springer-Verlag, Berlin, Germany, pp 281–293CrossRefGoogle Scholar
  3. Bungihan ME, Tan MA, Kitajima M, Kogure N, Franzblau SG, dela Cruz TEE, Takayama H, Nonato MG (2011) Bioactive metabolites of Diaporthe sp. P133, an endophytic fungus isolated from Pandanus amaryllifolius. J Nat Med 65(3-4):606–609CrossRefGoogle Scholar
  4. Calcul L, Waterman C, Ma WS, Lebar MD, Harter C, Mutka T et al (2013) Screening mangrove endophytic fungi for antimalarial natural products. Mar Drugs 11:5036–5050CrossRefGoogle Scholar
  5. Cao S, Clardy J (2011) New naphthoquinones and a new δ-lactone produced by endophytic fungi from Costa Rica. Tetrahedron Lett 52(17):2206–2208CrossRefGoogle Scholar
  6. Cao S, Ross L, Tamayo G, Clardy J (2010) Asterogynins: secondary metabolites from a Costa Rican endophytic fungus. Org Lett 12(20):4661–4663CrossRefGoogle Scholar
  7. Cheng MJ, Wu MD, Yanai H, Su YS, Chen IS, Yuang GF et al (2012) Secondary metabolites from the endophytic fungus Biscogniauxia formosana and their antimycobacterial activity. Phytochem Lett 5:467–472CrossRefGoogle Scholar
  8. Chomcheon P, Sriubolmas N, Wiyakrutta S, Ngamrojanavanich N, Chaichit N, Mahidol C, Ruchirawat S, Kittakoop P (2006) Cyclopentenones, scaffolds for organic syntheses produced by the endophytic fungus mitosporic dothideomycete sp. LRUB20. J Nat Prod 69(9):1351–1353CrossRefGoogle Scholar
  9. Chomcheon P, Wiyakrutta S, Sriubolmas N, Ngamrojanavanich N, Isarangkul D, Kittakoop P (2005) 3-Nitropropionic acid (3-NPA), a potent antimycobacterial agent from endophytic fungi: is 3-NPA in some plants produced by endophytes? J Nat Prod 68:1103–1105CrossRefGoogle Scholar
  10. Copp BR, Pearce AN (2007) Natural product growth inhibitors of Mycobacterium tuberculosis. J Nat Prod 24:278–297CrossRefGoogle Scholar
  11. Cowman AF, Duraisingh MT (2001) An old enemy, a new battle plan: perspectives on combating drug-resistance malaria. EMBO Rep 2(2):77–79CrossRefGoogle Scholar
  12. Davis RA, Carroll AR, Andrews KT, Boyle GM, Tran TL, Healy PC et al (2010) Pestalactams A–C: novel caprolactams from the endophytic fungus Pestalotiopsis sp. Org Biomol Chem 8(8):1785–1790CrossRefGoogle Scholar
  13. Demain AL (2000) Microbial natural products: a past with a future. In: Wrigley SK, Hayes MA, Thomas R, Chrystal EJT, Nicholson N (eds) Biodiversity: new leads for pharmaceutical and agrochemical industries. Royal Society of Chemistry, Cambridge, pp 3–16Google Scholar
  14. Elfita E, Muharni M, Munawar M, Legasari L, Darwati D (2011) Antimalarial compounds from endophytic fungi of brotowalI (Tinaspora crispa L). Indones J Chem 11(1):53–58CrossRefGoogle Scholar
  15. Elsebai MF, Natesan L, Kehraus S, Mohamed IE, Schnakenburg G, Sasse F, Shaaban S, Gütschow M, König GM (2011) HLE-inhibitory alkaloids with a polyketide skeleton from the marine-derived fungus. J Nat Prod 74(10):2282–2285CrossRefGoogle Scholar
  16. Farnsworth NR, Akerele O, Bingel AS, Soejarto DD, Guo Z (1985) Medicinal plants in therapy. Bull World Health Organ 63:965–981PubMedPubMedCentralGoogle Scholar
  17. Fatima N, Muhammad SA, Qazi MA, Shah ZU, Khan AK, Maalik A et al (2017) Fungal metabolites and antimalarial drug discovery; a review. Acta Pol Pharm 74(5):1327–1341Google Scholar
  18. Ferreira MC, Cantrell CL, Wedge DE, Gonçalves VN, Jacob MR, Khan S et al (2017) Antimycobacterial and antimalarial activities of endophytic fungi associated with the ancient and narrowly endemic neotropical plant Vellozia gigantea from Brazil. Mem Inst Oswaldo Cruz 112(10):692–697CrossRefGoogle Scholar
  19. Ge HM, Zhang Q, Xu SH, Guo ZK, Song YC, Huang WY, Tan RX (2011) Chaetoglocins A–D, four new metabolites from the endophytic fungus Chaetomium globosum. Planta Med 77(03):277–280CrossRefGoogle Scholar
  20. Gillespie SH (2002) Evolution of drug resistance in Mycobacterium tuberculosis: clinical and molecular perspective. Antimicrob Agents Chemother 46:267–274CrossRefGoogle Scholar
  21. Gordon B (2007) Jeweller of the jungle. Americas 59:38–45Google Scholar
  22. Griffith DE, Aksamit T, Brown-Elliott BA, Catanzaro A, Daley C, Gordin F, Iseman M et al (2007) An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med 175(4):367–416CrossRefGoogle Scholar
  23. Hemtasin C, Kanokmedhakul S, Kanokmedhakul K, Hahnvajanawong C, Soytong K, Prabpai S et al (2011) Cytotoxic pentacyclic and tetracyclic aromatic sesquiterpenes from Phomopsis archeri. J Nat Prod 74:609–613CrossRefGoogle Scholar
  24. Isaka M, Jaturapat A, Rukseree K, Danwisetkanjana K, Tanticharoen M, Thebtaranonth Y (2001) Phomoxanthones A and B, novel xanthone dimers from the endophytic fungus Phomopsis species. J Nat Prod 64:1015–1018CrossRefGoogle Scholar
  25. Isaka M, Berkaew P, Intereya K, Komwijit S, Sathitkunanon T (2007) Antiplasmodial and antiviral cyclohexadepsipeptides from the endophytic fungus Pullularia sp. BCC 8613. Tetrahedron 63(29):6855–6860CrossRefGoogle Scholar
  26. Jiménez-Romero C, Ortega-Barría E, Arnold AE, Cubilla-Rios L (2008) Activity against Plasmodium falciparum of lactones isolated from the endophytic fungus Xylaria sp. Pharm Biol 46(10-11):1–4CrossRefGoogle Scholar
  27. Jouda JB, Mawabo IK, Notedji A, Mbazoa CD, Nkenfou J, Wandji J, Nkenfou CN (2016) Antimycobacterial activity of polyketides from Penicillium sp. endophyte isolated from Garcinia nobilis against Mycobacterium smegmatis. Int J Mycobacteriol 5(2):192–196CrossRefGoogle Scholar
  28. Kaushik NK, Murali TS, Sahal D, Suryanarayanan TS (2014) A search for antiplasmodial metabolites among fungal endophytes of terrestrial and marine plants of southern India. Acta Parasitol 59(4):745–757CrossRefGoogle Scholar
  29. King HC, Khera-Butler T, James P, Oakley BB, Erenso G, Aseffa A, Knight R, Wellington EM, Courtenay O (2017) Environmental reservoirs of pathogenic mycobacteria across the Ethiopian biogeographical landscape. PLoS One 12(3):e0173811CrossRefGoogle Scholar
  30. Kongsaeree P, Prabpai S, Sriubolmas N, Vongvein C, Wiyakrutta S (2003) Antimalarial dihydroisocoumarins produced by Geotrichum sp., an endophytic fungus of Crassocephalum crepidioides. J Nat Prod 66:709–711CrossRefGoogle Scholar
  31. Kontnik R, Clardy J (2008) Codinaeopsin, an antimalarial fungal polyketide. Org Lett 10(18):4149–4151CrossRefGoogle Scholar
  32. Koul A, Arnoult E, Lounis N, Guillemont J, Andries K (2011) The challenge of new drug discovery for tuberculosis. Nature 469:483–490CrossRefGoogle Scholar
  33. Liu M, Abdel-Mageed WM, Ren B, He W, Huang P, Li X et al (2014) Endophytic Streptomyces sp. Y3111 from traditional Chinese medicine produced antitubercular pluramycins. Appl Microbiol Biotechnol 98(3):1077–1085CrossRefGoogle Scholar
  34. Marmouzi I, Faouzi MEA, Saidi N, Cherrah Y, Rehberg N, Ebada SS et al (2017) Bioactive secondary metabolites from Chaetomium globosum, an endophyte from the moroccan plant Avena sativa. Chem Nat Compd 53(6):1208–1211CrossRefGoogle Scholar
  35. Mishra VK, Singh G, Passari AK, Yadav MK, Gupta VK, Singh BP (2016) Distribution and antimicrobial potential of endophytic fungi associated with ethnomedicinal plant Melastoma malabathricum L. J Environ Biol 37(2):229–237PubMedGoogle Scholar
  36. Mishra VK, Passari AK, Chandra P, Leo VV, Kumar B, Gupta VK, Singh BP (2017a) Determination and production of antimicrobial compounds by Aspergillus clavatonanicus strain MJ31, an endophytic fungus from Mirabilis jalapa L. using UPLC-ESI-MS/MS and TD GC-MS. PLoS One 12(10):1–24. CrossRefGoogle Scholar
  37. Mishra VK, Passari AK, Leo VV, Singh BP (2017b) Molecular diversity and detection of endophytic fungi based on their antimicrobial biosynthetic genes. In: Singh BP, Gupta VK (eds) Molecular markers in mycology, fungal biology. Springer International Publishing, Switzerland, pp 1–35. CrossRefGoogle Scholar
  38. Nosten F, Van Vugt M, Price R, Luxemburger C, Thway KL, Brockman A et al (2000) Effects of artesunate-mefloquine combination on incidence of Plasmodium falciparum malaria and mefloquine resistance in western Thailand: a prospective study. Lancet 356(9226):297–302CrossRefGoogle Scholar
  39. Pan JH, Chen Y, Huang YH, Tao YW, Wang J, Li Y et al (2011) Antimycobacterial activity of fusaric acid from a mangrove endophyte and its metal complexes. Arch Pharm Res 34(7):1177–1181CrossRefGoogle Scholar
  40. Passari AK, Mishra VK, Singh G, Singh P, Kumar B, Gupta VK, Sharma RK, Saikia R, Donovan A, Singh BP (2017) Insights into the functionality of endophytic actinobacteria with a focus on their biosynthetic potential and secondary metabolites production. Sci Rep 7(11809):1–17. CrossRefGoogle Scholar
  41. Phongpaichit S, Nikom J, Rungjindamai N, Sakayaroj J, Hutadilok-Towatana N, Rukachaisirikul V et al (2007) Biological activities of extracts from endophytic fungi isolated from Garcinia plants. FEMS Immunol Med Microbiol 51:517–525CrossRefGoogle Scholar
  42. Prabpai S, Wiyakrutta S, Sriubolmas N, Kongsaeree P (2015) Antimycobacterial dihydronaphthalenone from the endophytic fungus Nodulisporium sp. of Antidesma ghaesembilla. Phytochem Lett 13:375–378CrossRefGoogle Scholar
  43. Rosa LH, Vieira MLA, Cota BB, Johann S (2011) Endophytic fungi of tropical forests: a promising source of bioactive prototype molecules for the treatment of neglected diseases. In: Ekinci D (ed) Drug development—a case study based insight into modern strategies. Intech, Croatia, pp 1–18Google Scholar
  44. Rukachaisirikul V, Sommart U, Phongpaichit S, Sakayaroj J, Kirtikara K (2008) Metabolites from the endophytic fungus Phomopsis sp. PSU-D15. Phytochemistry 69(3):783–787CrossRefGoogle Scholar
  45. Ryan KJ, Ray CG (2004) Sherris medical microbiology, 4th edn. McGraw Hill, New YorkGoogle Scholar
  46. Salomon CE, Schmidt LE (2012) Natural products as leads for tuberculosis drug development. Curr Top Med Chem 12:735–765CrossRefGoogle Scholar
  47. Sappapan R, Sommit D, Ngamrojanavanich R, Pengpreecha S, Wiyakrutta C, Sriubolmas N et al (2008) 11-Hydroxymonocerin from the Plant Endophytic Fungus Exserohilum rostratum. J Nat Prod 71:1657–1659CrossRefGoogle Scholar
  48. Shah A, Rather MA, Hassan QP, Aga MA, Mushtaq S, Shah AM et al (2017) Discovery of anti-microbial and antitubercular molecules from Fusarium solani: an endophyte of Glycyrrhiza glabra. J Appl Microbiol 122(5):1168–1176CrossRefGoogle Scholar
  49. Singh SB, Pelaez F (2008) Biodiversity, chemical diversity and drug discovery. In: Natural compounds as drugs, vol I. Birkhäuser, Basel, pp 141–174CrossRefGoogle Scholar
  50. Sommart U, Rukachaisirikul V, Sukpondma Y, Phongpaichit S, Sakayaroj J, Kirtikara K (2008) Hydronaphthalenones and a dihydroramulosin from the endophytic fungus PSU-N24. Chem Pharm Bull 56(12):1687–1690CrossRefGoogle Scholar
  51. Strobel GA (2003) Endophytes as sources of bioactive products. Microbes Infect 5:535–544CrossRefGoogle Scholar
  52. Strobel G, Daisy B, Castillo U, Harper J (2004) Natural products from endophytic microorganisms. J Nat Prod 67:257–268CrossRefGoogle Scholar
  53. Tansuwan S, Pornpakakul S, Roengsumran S, Petsom A, Muangsin N, Sihanonta P et al (2007) Antimalarial benzoquinones from an endophytic fungus, Xylaria sp. J Nat Prod 70:1620–1623CrossRefGoogle Scholar
  54. Uzma F, Hashem A, Murthy N, Mohan HD, Kamath PV, Singh BP, Venkataramana M, Gupta VK, Siddaiah CN, Chowdappa S, Alqaeawi AA, Abd-Allah EF (2018) Endophytic fungi—alternative sources of cytotoxic compounds: a review. Front Pharmacol 9(309):1–37.
  55. Verma VC, Lobkovsky E, Gange AC, Singh SK, Prakash S (2011) Piperine production by endophytic fungus Periconia sp. isolated from Piper longum L. J Antibiot 64(6):427–431CrossRefGoogle Scholar
  56. Wang C, Wang J, Huang Y, Chen H, Li Y, Zhong L et al (2013) Antimycobacterial activity of marine fungus-derived 4-deoxybostrycinand nigrosporin. Molecules 18:1728–1740CrossRefGoogle Scholar
  57. White NJ (2004) Antimalarial drug resistance. J Clin Invest 113(8):1084CrossRefGoogle Scholar
  58. WHO (2014) Malaria fact sheet N°94. Archived from the original on 3 September 2014. Retrieved 28 Aug 2014Google Scholar
  59. WHO (2017a) Global tuberculosis control. World Health Organization, GenevaGoogle Scholar
  60. WHO (2017b) World malaria report 2017. World Health Organization, GenevaGoogle Scholar
  61. Wiyakrutta S, Sriubolmas N, Panphut W, Thongon N, Danwisetkanjana K, Ruangrungsi N et al (2004) Endophytic fungi with anti-microbial, anti-cancer and anti-malarial activities isolated from Thai medicinal plants. World J Microbiol Biotechnol 20:265–272CrossRefGoogle Scholar
  62. Wijeratne EM, He H, Franzblau SG, Hoffman AM, Gunatilaka AA (2013) Phomapyrrolidones A-C, antitubercular alkaloids from the endophytic fungus Phoma sp. NRRL46751. J Nat Prod 76:1860–1865CrossRefGoogle Scholar
  63. Zothanpuia, Passari AK, Leo VV, Kumar B, Chnadra P, Nayak C, Hashem A, Abd_Allah EF, Alqarawi AA, Singh BP (2018) Bioprospection of actinobacteria derived from freshwater sediments for their potential to produce antimicrobial compounds. Microb Cell Fact 17(1):68. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mariana Costa Ferreira
    • 1
  • Camila Rodrigues de Carvalho
    • 2
  • Carlos Leomar Zani
    • 2
  • Luiz Henrique Rosa
    • 1
    Email author
  1. 1.Department of MicrobiologyFederal University of Minas GeraisBelo HorizonteBrazil
  2. 2.Laboratório de Química de Produtos Naturais BioativosFundação Oswaldo Cruz-Fiocruz, Instituto René RachouBelo HorizonteBrazil

Personalised recommendations