Advertisement

Endophytic Fungi: Recent Advances in Identification and Explorations

  • Vinay Kumar
  • Ravindra Soni
  • Lata Jain
  • Biplab Dash
  • Reeta Goel
Chapter
Part of the Fungal Biology book series (FUNGBIO)

Abstract

Endophytes have profound impacts on plants, including beneficial effects on agriculturally important traits. Endophytic fungi inhabit in the internal living tissues of almost all known plants, without causing any negative effect on their host plant. Endophytic fungi are involved in the production of various bioactive natural products and are thus known for enhancing plant growth, increasing their fitness, and strengthening tolerances to various abiotic and biotic stresses. Traditionally, culture based identification of endophytic fungi in natural environments has been limited due to non-culturable and non-sporulating nature of most of the endophytic fungi. Advances in molecular technique, namely ITS sequencing, pyrosequencing, DNA barcoding, fatty acid methyl ester analysis (FAME), and MALDI-TOF led to the rapid and efficient identification of both culture dependent and independent fungi. In order to explore the potential of fungal endophytes, it is essential to identify the communal diversity as their composition is highly influenced by age, tissues, and genotype of host plants. The better understanding of endophytic diversity led to their exploration for important sources of bioactive natural products having enormous potential for the discovery of new molecules for drug discovery, industrial use, and agricultural applications.

References

  1. Akinsanya MA, Goh JK, Lim SP, Ting ASY (2015) Metagenomics study of endophytic bacteria in Aloe vera using next-generation technology. Genom Data 6:159–163PubMedPubMedCentralCrossRefGoogle Scholar
  2. Aly AH, Debbab A, Proksch P (2011) Fungal endophytes: unique plant inhabitants with great promises. Appl Microbiol Biotechnol 90(6):1829–1845PubMedPubMedCentralCrossRefGoogle Scholar
  3. Amin N (2013) Diversity of endophytic fungi from root of Maize var. Pulut (waxy corn local variety of South Sulawesi, Indonesia). Int J Curr Microbiol Appl Sci 2(8):148–154Google Scholar
  4. Arnold AE, Herre EA (2003) Canopy cover and leaf age affect colonization by tropical fungal endophytes: ecological pattern and process in Theobroma cacao (Malvaceae). Mycologia 95(3):388–398PubMedCrossRefGoogle Scholar
  5. Arnold AE, Henk DA, Eells RL, Lutzoni F, Vilgalys R (2007) Diversity and phylogenetic affinities of foliar fungal endophytes in loblolly pine inferred by culturing and environmental PCR. Mycologia 99(2):185–206PubMedCrossRefGoogle Scholar
  6. Bagyalakshmi TA, Ramesh V, Arivudainambi USE, Rajendran A (2012) A novel endophytic fungus Pestalotiopsis sp. Inhibiting Pinus caneriensis with antibacterial and antifungal potential. Int J Adv Life Sci 1:1–7Google Scholar
  7. Balestrini R, Bonfante P (2008) Laser Microdissection (LM): applications to plant materials. Plant Biosyst 142(331):336Google Scholar
  8. Berg G, Hallmann J (2006) Control of plant pathogenic fungi with bacterial endophytes. In: Schulz BJE, Boyle CJC, Sieber TN (eds) Microbial root endophytes. Springer, Berlin, pp 53–69CrossRefGoogle Scholar
  9. Bödeker ITM, Nygren CMR, Taylor AFS, Olson A, Lindahl BD (2009) ClassII peroxidase encoding genes are present in a wide phylogenetic range of ectomycorrhizal fungi. ISME J 3:1387–1395PubMedCrossRefGoogle Scholar
  10. Bokati D, Herrera J, Poudel R (2016) Soil influences colonization of root-associated fungal endophyte communities of maize, wheat, and their progenitors. J Mycol Article ID 8062073, 9 pGoogle Scholar
  11. Busby PE, Ridout M, Newcombe G (2016) Fungal endophytes: modifiers of plant disease. Plant Mol Biol 90:645–655PubMedCrossRefGoogle Scholar
  12. Card SD, Johnson LJ, Teasdale S, Caradus J (2016) Deciphering microbial behaviour—the link between endophyte biology and efficacious biological control agents. FEMS Microbiol Ecol 92Google Scholar
  13. Clarke BB, White JF Jr, Hurley RH, Torres MS, Sun S, Huff DR (2006) Endophyte-mediated suppression of dollar spot disease in fine fescues. Plant Dis 90:994–998CrossRefGoogle Scholar
  14. Clement SL, Wilson AD, Lester DG, Davitt CM (1997) Fungal endophytes of wild barley and their effects on Diuraphis noxia population development. Entomol Exp Appl 82:275–281CrossRefGoogle Scholar
  15. Cocq KL, Gurr SJ, Hirsch PR, Mauchline TH (2017) Exploitation of endophytes for sustainable agricultural intensification. Mol Plant Pathol 18:469–473CrossRefGoogle Scholar
  16. Crozier J, Thomas SE, Aime MC, Evans HC, Holmes KA (2006) Molecular characterization of fungal endophytic morphospecies isolated from stems and pods of Theobroma cacao. Plant Pathol 55:783–791CrossRefGoogle Scholar
  17. D’Annibale A, Rosetto F, Leonardi V, Federici F, Petruccioli M (2006) Role of autochthonous filamentous fungi in bioremediation of a soil historically contaminated with aromatic hydrocarbons. Appl Environ Microbiol 72(1):28–36PubMedPubMedCentralCrossRefGoogle Scholar
  18. Dalal JM, Kulkarni NS (2014) Population variance and diversity of endophytic fungi in soybean Glycine max (L) Merril. RRJBS 3(4):33–39Google Scholar
  19. Deshmukh SK, Mishra PD, Kulkarni-Almeida VSA, Sahoo MR, Periyasamy G, Goswami H et al (2009) Anti-inflammatory and anti-cancer activity of Ergoflavin isolated from an endophytic fungus. Chem Biodivers 6:784–789PubMedCrossRefGoogle Scholar
  20. Donoso EP, Bustamante RO, Caru M, Niemeyer HM (2008) Water deficit as a driver of the mutualistic relationship between the fungus Trichoderma harzianum and two wheat genotypes. Appl Environ Microbiol 74(5):1412–1417PubMedPubMedCentralCrossRefGoogle Scholar
  21. Doty SL (2017) Functional importance of the plant endophytic microbiome: implications for agriculture, forestry, and bioenergy. In: Doty S (ed) Functional importance of the plant microbiome. Springer, ChamCrossRefGoogle Scholar
  22. Duong LM, McKenzie EHC, Lumyang S, Hyde KD (2008) Fungal sucession of senescent leaves of Castaopsis diversifolia in Doi Suthep-Pui National Park, Thiland. Fungal Divers 30:23–36Google Scholar
  23. Fernandes E, Estadual U, Claros M, Liparini O, Universidade P, Silva C, Federal U, Queiroz M, Federal U (2015) Diversity of endophytic fungi in Glycine max. Microbiol Res 181:84–92PubMedCrossRefGoogle Scholar
  24. Filho FCS, da Silva Amaral L, Rodrigues-Filho E (2011) Composition of essential oils from Cupressus lusitanica and a Xylariaceous fungus found on its leaves. Biochem Syst Ecol 39:485–490CrossRefGoogle Scholar
  25. Fill TP, da Silva BF, Rodrigues-Fo E (2010) Biosynthesis of phenylpropanoid amides by an endophytic penicillium brasilianum found in root bark of Melia azedarach. J Microbiol Biotechnol 20(3):622–629PubMedGoogle Scholar
  26. Fisher PJ, Petrini O, Lappin Scott HM (1992) The distribution of some fungal andbacterialendophytes in maize (Zea mays L.). New Phytol 122:299–305CrossRefGoogle Scholar
  27. Fouda AH, Hassan SED, Eid AM, Ewais EED (2015) Biotechnological applications of fungal endophytes associated with medicinal plant Asclepias sinaica (Bioss.). Ann Agric Sci 60(1):95–104Google Scholar
  28. Franken P (2012) The plant strengthening root endophyte Piriformospora indica: potential application and the biology behind. Appl Microbiol Biotechnol 96(6):1455–1464PubMedPubMedCentralCrossRefGoogle Scholar
  29. Gadd GM (1990) Fungi and yeast metal accumulation. In: Ehrlich HL, Brierley CL (eds) Microbiol mineral recovery. McGraw Hill, New York, pp 249–276Google Scholar
  30. Gangadevi V, Muthumary J (2008) Taxol, an anticancer drug produced by an endophytic fungus Bartalinia robillardoides Tassi, isolated froma medicinal plant, Aegle marmelos Correaex Roxb. World J Microbiol Biotechnol 24(5):717–724CrossRefGoogle Scholar
  31. Gange AC, Eschen R, Wearn JA, Thawer A, Sutton BC (2012) Differential effects of foliar endophytic fungi on insect herbivores attacking a herbaceous plant. Oecologia 168(4):1023–1031PubMedCrossRefGoogle Scholar
  32. Ganley RJ, Brunsfeld SJ, Newcombe G (2004) A community of unknown, endophytic fungi in western white pine. Proc Natl Acad Sci U S A 101(27):10107–10112PubMedPubMedCentralCrossRefGoogle Scholar
  33. Gao Y, Zhao JT, Zu YG, Fu YJ, Wang W et al (2011) Characterization of five fungal endophytes producing Cajaninstilbene acid isolated from pigeon pea [Cajanus cajan (L.) Millsp.]. PLoS One 6(11):e27589PubMedPubMedCentralCrossRefGoogle Scholar
  34. Gardes M, Bruns T (1993) ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol 2:113 8PubMedCrossRefGoogle Scholar
  35. Giridharan P, Verekar SA, Khanna A, Mishra PD, Deshmukh SK (2012) Anticancer activity of sclerotiorin isolated from an endophytic fungus Cephalotheca faveolata Yaguchi, Nishim. & Udagawa. Indian J Exp Biol 50:464–468PubMedPubMedCentralGoogle Scholar
  36. González-Teuber M, Vilo C, Bascuñán-Godoy L (2017) Molecular characterization of endophytic fungi associated with the roots of Chenopodium quinoa inhabiting the Atacama Desert, Chile. Genom Data 11:109–112PubMedPubMedCentralCrossRefGoogle Scholar
  37. Hallmann J, Berg G, Schulz B (2006) Isolation procedures for endophytic microorganisms. In: Schulz BJE, Boyle CJC, Sieber TN (eds) Microbial root endophytes. Soil biology, vol 9. Springer, Berlin/HeidelbergGoogle Scholar
  38. Hamayun M, Khan SA, Ahmad N, Tang D, Kang S, Na C, Sohn E, Hwang Y, Shin D, Lee B, Kim J, Lee I (2009) Cladosporium sphaerospermum as a new plant growth-promoting endophyte from the roots of Glycine max (L.) Merr. World J Microbiol Biotechnol 25:627–632CrossRefGoogle Scholar
  39. Harper K, Arif AM, Ford EJ et al (2003) Pestacin: a 1,3-dihydro isobenzofuran from Pestalotiopsis microspora possessing antioxidant and antimycotic activities. Tetrahedron 59(14):2471–2476Google Scholar
  40. Hol WHG, Raaijmakers CE, Mons I, Meyer KM, van Dam NM (2016) Root-lesion nematodes suppress cabbage aphid population development by reducing aphid daily reproduction. Front Plant Sci 7:111PubMedPubMedCentralCrossRefGoogle Scholar
  41. Howard RJ, Bourett TM, Czymmek KJ (2004) Essential microscopy-based technology for studies of fungal pathogen-plant host interactions. Microsc Microanal 10(S02):218–219CrossRefGoogle Scholar
  42. Hyde KD, Soytong K (2008) The fungal endophyte dilemma. Fungal Divers 33:163–173Google Scholar
  43. Impullitti AE, Malvick DK (2013) Fungal endophyte diversity in soybean. J Appl Microbiol 114:1500–1506PubMedCrossRefGoogle Scholar
  44. Isaka M, Jaturapat A, Rukseree K, Danwisetkanjana K, Tanticharoen M, Thebtaranonth Y (2001) Phomoxanthones A and B, novel xanthone dimers from the endophytic fungus Phomopsis species. J Nat Prod 64(8):1015–1018PubMedPubMedCentralCrossRefGoogle Scholar
  45. Jia M, Chen L, Xin H-L, Zheng C-J, Rahman K, Han T, Qin L-P (2016) A friendly relationship between endophytic fungi and medicinal plants: a systematic review. Front Microbiol 7:906PubMedPubMedCentralCrossRefGoogle Scholar
  46. Johnson LJ, De Bonth ACM, Briggs LR, Caradus JR, Finch SC, Fleetwood DJ, Fletcher LR, Hume DE, Johnson RD, Popay AJ, Tapper BA, Simpson WR, Voisey CR, Card SD (2013) The exploitation of epichloae endophytes for agricultural benefit. Fungal Divers 60:1–18CrossRefGoogle Scholar
  47. Joseph B, Mini Priya R (2011) Bioactive compounds from endophytes and their potential in pharmaceutical effect: a review. Am J Biochem Mol Biol 1(3):291–309CrossRefGoogle Scholar
  48. João Lúcio Azevedo, Walter Maccheroni Jr., Welington Luiz de Araújo, Endophytic microorganisms: a review on insect control and recent advances on tropical plants. EJB Electronic Journal of Biotechnology,Vol.3 No.1, Issue of April 15, 2000.Google Scholar
  49. Katoch M, Pull S (2017) Endophytic fungi associated with Monarda citriodora, an aromatic and medicinal plant and their biocontrol potential. Pharm Biol 55(1):1528–1535PubMedPubMedCentralCrossRefGoogle Scholar
  50. Kemler M, Garnas J, Wingfield MJ, Gryzenhout M, Pillay K-A, Slippers B (2013) Ion torrent PGM as tool for fungal community analysis: a case study of endophytes in Eucalyptus grandis reveals high taxonomic diversity. PLoS One 8(12):e81718PubMedPubMedCentralCrossRefGoogle Scholar
  51. Khan AL, Lee IJ (2013) Endophytic Penicillium funiculosum LHL06 secretes gibberellin that reprograms Glycine max L. growth during copper stress. BMC Plant Biol 13:86PubMedPubMedCentralCrossRefGoogle Scholar
  52. Kumar S, Kaushik N, Edrada-Ebel R, Ebel R, Proksch P (2011) Isolation, characterization, and bioactivity of endophytic fungi of Tylophora indica. World J Microbiol Biotechnol 27(3):571–577.  https://doi.org/10.1007/s11274-010-0492-6CrossRefGoogle Scholar
  53. Kumara PM, Shweta S, Vasanthakumari MM, Sachin N, Manjunatha BL, Jadhav SS, Ravikanth G, Ganeshaiah KN, Shaanker RU (2014) Endophytes and plant secondary metabolite synthesis: molecular and evolutionary perspective. In: Verma VC, Gange AC (eds) Advances in endophytic research. Springer, New Delhi, pp 177–190CrossRefGoogle Scholar
  54. Kusari S, Lamshöft M, Zühlke S, Spiteller M (2008) An endophytic fungus from Hypericum perforatumthat produces hypericin. J Nat Prod 71(2):159–162PubMedCrossRefGoogle Scholar
  55. Kusari S, Zühlke S, Spiteller M (2009) An endophytic fungus from Camptotheca acuminata that produces camptothecin and analogues. J Nat Prod 72(1):2–7PubMedCrossRefGoogle Scholar
  56. Kusari S, Verma VC, Lamshöft M, Spiteller M (2012) An endophytic fungus from Azadirachta indica A. Juss. that produces azadirachtin. World J Microbiol Biotechnol 28:1287–1294CrossRefGoogle Scholar
  57. Kusari S, Singh S, Jayabaskaran C (2014) Biotechnological potential of plant-associated endophytic fungi: hope versus hype. Trends Biotechnol 32:297–303CrossRefGoogle Scholar
  58. Larran S, Perelló A, Rosa Simón M, Moreno V (2007) The endophytic fungi from wheat (Triticum aestivum L.). World J Microbiol Biotechnol 23:565–572CrossRefGoogle Scholar
  59. Leewijit T, Pongnak W, Soytong K, Poeaim S (2016) Int J Agric Technol 12(7.2):2191–2202Google Scholar
  60. Li JY, Harper JK, Grant DM, Tombe BO, Bashyal B, Hess WM, Strobel GA (2001) Ambuic acid, a highly functionalized cyclohexenone with antifungal activity from Pestalotiopsis spp. and Monochaetia sp. Phytochemistry 56(5):463–468PubMedCrossRefGoogle Scholar
  61. Lindahl BD, Taylor AFS (2004) N-acetylhexosaminidase coding genes in ectomycorrhizal basidiomycetes. New Phytol 164:193–199CrossRefGoogle Scholar
  62. Liu X, Dong M, Chen X, Jiang M, Lv X, Zhou J (2008) Antimicrobial activity of an endophytic Xylariasp.YX-28 and identification of its antimicrobial compound 7-amino-4-methylcoumarin. Appl Microbiol Biotechnol 78(2):241–247PubMedCrossRefGoogle Scholar
  63. Lugtenberg BJ, Caradus JR, Johnson LJ (2016) Fungal endophytes for sustainable crop production. FEMS Microbiol Ecol 92(12):194CrossRefGoogle Scholar
  64. Martin K, Rygiewicz P (2005) Fugal-specific primers developed for analysis of the ITS region of environmental DNA extracts. BMC Microbiol 5:28PubMedPubMedCentralCrossRefGoogle Scholar
  65. Miller JD, Sumarah MW, Adams GW (2008) Effect of a rugulosinproducing endophyte in Picea glauca on Choristoneura fumiferana. J Chem Ecol 34:362e368CrossRefGoogle Scholar
  66. Mishra VK, Passari AK, Chandra P, Leo VV, Kumar B, Gupta VK, Singh BP (2017) Determination and production of antimicrobial compounds by Aspergillus clavatonanicus strain MJ31, an endophytic fungus from Mirabilis jalapa L. using UPLC-ESI-MS/MS and TD GC-MS. PLoS One 12(10):1–24.  https://doi.org/10.1371/journal.pone.0186234CrossRefGoogle Scholar
  67. Murphy BR, Nieto LM, Doohan FM, Trevor R (2015) Hodkinsona Profundae diversitas: the uncharted genetic diversity in a newly studied group of fungal root endophytes. Mycology 6(3–4):139–150PubMedPubMedCentralCrossRefGoogle Scholar
  68. Nicoletti R, Fiorentino A (2015) Plant bioactive metabolites and drugs produced by endophytic fungi of Spermatophyta. Agriculture 5(4):918–970CrossRefGoogle Scholar
  69. Obledo, E.N., Barragán-Barragán, L.B., Gutiérrez-González, P. , B. C. Ramírez-Hernández, B. C., José J. RamírezBenjamín Rodríguez-Garay (2003) Plant Cell, Tissue and Organ Culture 74: 237.Google Scholar
  70. Ofek-Lalzar M, Gur Y, Ben-Moshe S, Sharon O, Kosman E, Mochli E, Sharon A (2016) Diversity of fungal endophytes in recent and ancient wheat ancestors Triticum dicoccoides and Aegilops sharonensis. FEMS Microbiol Ecol 92(10)PubMedCrossRefGoogle Scholar
  71. Orole OO, Adejumo TO (2011) Bacterial and fungal endophytes associated with grains and roots of maize. J Ecol Nat Environ 3:298–303Google Scholar
  72. Oses R, Valenzuela S, Freer J, Baeza J, Rodríguez J (2006) Evaluation of fungal endophytes for lingo cellulolytic enzyme production and wood biodegradation. Int Biodeterior Biodegrad 57:129–135CrossRefGoogle Scholar
  73. Ownley BH, Gwinn KD, Vega FE (2010) Endophytic fungal entomopathogens with activity against plant pathogens: ecology and evolution. BioControl 55:113–128CrossRefGoogle Scholar
  74. Pancher M, Ceol M, Corneo PE, Longa CMO, Yousaf S, Pertot I, Campisano A (2012) Fungal endophytic communities in grapevines (Vitis vinifera L.) respond to crop management. Appl Environ Microbiol 78(12):4308–4317PubMedPubMedCentralCrossRefGoogle Scholar
  75. Park J-H, Choi GJ, Lee HB et al (2005) Griseofulvin from Xylaria sp. strain F0010, an endophytic fungus of Abies holophylla and its antifungal activity against plant pathogenic fungi. J Microbiol Biotechnol 15(1):112–117Google Scholar
  76. Park YH, Lee SG, Ahn DJ et al (2012) Diversity of fungal endophytes in various tissues of Panax ginseng meyer cultivated in Korea. J Ginseng Res 36(2):211–217PubMedPubMedCentralCrossRefGoogle Scholar
  77. Parsa S, García-Lemos AM, Castillo K, Ortiz V, López-Lavalle LAB, Braun J, Vega FE (2016) Fungal endophytes in germinated seeds of the common bean, Phaseolus vulgaris. Fungal Biol 120(5):783–790PubMedPubMedCentralCrossRefGoogle Scholar
  78. Pasut G, Veronese FM (2009) PEG conjugates in clinical development or use as anticancer agents: an overview. Adv Drug Deliv Rev 61(13):1177–1188PubMedCrossRefGoogle Scholar
  79. Paul NC, Deng JX, Shin KS, Yu SH (2012) Molecular and morphological characterization of endophytic Heterobasidion araucariae from roots of Capsicum annuum L. in Korea. Mycobiology 40(2):85–90PubMedPubMedCentralCrossRefGoogle Scholar
  80. Pili NN, França SC, Kyndt T, Makumba BA, Skilton R, Höfte M, Mibey RK, Gheysen G (2016) Analysis of fungal endophytes associated with rice roots from irrigated and upland ecosystems in Kenya. Plant Soil 405(1–2):371–380CrossRefGoogle Scholar
  81. Potshangbam M, Devi SI, Sahoo D, Strobel GA (2017) Functional characterization of endophytic fungal community associated with Oryza sativa L. and Zea mays L. Front Microbiol 8:325PubMedPubMedCentralCrossRefGoogle Scholar
  82. Powthong P, Thongmee A, Suntornthiticharoen P (2013) Antioxidant and antimicrobial activities of endophytic fungi isolated from Sesbania grandiflora (L.) Pers. Int J Phytomed 5(1):102–107. ISSN 0975-0185Google Scholar
  83. Puri SC, Verma V, Amna T, Qazi GN, Spiteller M (2005) An endophytic fungus from Nothapodytes foetida that produces camptothecin. J Nat Prod 68:1717–1719PubMedCrossRefGoogle Scholar
  84. Puri SC, Nazir A, Chawla R et al (2006) The endophytic fungus Trametes hirsuta as a novel alternative source of podophyllotoxin and related aryl tetralin lignans. J Biotechnol 122(4):494–510CrossRefPubMedPubMedCentralGoogle Scholar
  85. Pusztahelyi T, Holb IJ, Pócsi I (2015) Secondary metabolites in fungus-plant interactions. Front Plant Sci 6:573PubMedPubMedCentralCrossRefGoogle Scholar
  86. Qi F, Jing T, Zhan Y (2012) Characterization of endophytic fungi from Acer ginnala Maxim. in an artificial plantation: media effect and tissue-dependent variation. PLoS One 7(10):e46785PubMedPubMedCentralCrossRefGoogle Scholar
  87. Qin JC, Zhang Y-M, Gao J-M et al (2009) Bioactive metabolites produced by Chaetomium globosum, an endophytic fungus isolated from Ginkgo biloba. Bioorg Med Chem Lett 19(6):1572–1574PubMedCrossRefGoogle Scholar
  88. Raja HA, Miller AN, Pearce CJ, Oberlies NH (2017) Fungal identification using molecular tools: a primer for the natural products research community. J Nat Prod 80(3):756–770PubMedPubMedCentralCrossRefGoogle Scholar
  89. Redman RS, Sheehan KB, Stout RG, Rodriguez RJ, Henson JM (2002) Thermotolerance conferred to plant host and fungal endophyte during mutualistic symbiosis. Science 298:1581CrossRefGoogle Scholar
  90. Rodriguez RJ, White JF Jr, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182(2):314–330CrossRefGoogle Scholar
  91. Rothen C, Miranda V, Aranda-Rickert A, Fracchia S, Rodríguez MA (2017) Characterization of dark septate endophyte fungi associated with cultivated soybean at two growth stages. Appl Soil Ecol 120:62–69CrossRefGoogle Scholar
  92. Russell JR, Huang J, Anand P, Kucera K, Sandoval AG, Dantzler KW, Hickman D, Jee J, Kimovec FM, Koppstein D, Marks DH, Mittermiller PA, Núñez SJ, Santiago M, Townes MA, Vishnevetsky M, Williams NE, Vargas MPN, Boulanger LA, Slack CB, Strobel SA (2011) Biodegradation of polyester polyurethane by endophytic fungi. Appl Environ Microbiol 77:6076–6084PubMedPubMedCentralCrossRefGoogle Scholar
  93. Russo ML, Pelizza SA, Cabello MN, Stenglein SA, Vianna MF, Scorsetti AC (2016) Endophytic fungi from selected varieties of soybean (Glycine max L. Merr.) and corn (Zea mays L.) grown in an agricultural area of Argentina. Rev Argent Microbiol 48(2):154–160PubMedGoogle Scholar
  94. Sani A, Venkateswarulunagam V, Netala R, Tartte V (2017) Screening and identification of heavy metal-tolerant endophytic fungi lasiodiplodia theobromae from boswellia ovalifoliolata an endemic plant of tirumala hills. Asian J Pharm Clin Res 10(3):488–491CrossRefGoogle Scholar
  95. Sanz-Ros VA, Muller MM, Martin S, Diez JJ (2015) Fungal endophytic communities on twigs of fast and slow growing Scots pine (Pinus sylvestris L.) in northern Spain. Fungal Biol 119:870–883PubMedCrossRefGoogle Scholar
  96. Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci 109(16):6241–6246PubMedCrossRefGoogle Scholar
  97. Schulz B, Sucker J, Aust HJ et al (1995) Biologically active secondary metabolites of endophytic Peziculaspecies. Mycol Res 99(8):1007–1015CrossRefGoogle Scholar
  98. Singh MP, Janso JE, Brady SF (2007) Cytoskyrins and cytosporones produced by Cytospora sp. CR200: taxonomy, fermentation and biological activities. Mar Drugs 5:71–84PubMedPubMedCentralCrossRefGoogle Scholar
  99. Soleimani M, Afyuni M, Hajabbasi MA, Nourbakhsh F, Sabzalian MR, Christensen JH (2010) Phytoremediation of an aged petroleum contaminated soil using endophyte infected and non-infected grasses. Chemosphere 81:1084–1090PubMedCrossRefGoogle Scholar
  100. Song YC, Huang WY, Sun C, Wang FW, Tan RX (2005) Characterization of graphislactone A as the antioxidant and free radical-scavenging substance from the culture of Cephalosporium sp. IFB-E001, an endophytic fungus in Trachelospermum jasminoides. Biol Pharm Bull 28(3):506–509PubMedCrossRefGoogle Scholar
  101. Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260:214–216PubMedCrossRefPubMedCentralGoogle Scholar
  102. Strobel GA (2003) Endophytes as sources of bioactive products. Microbes Infect 5(6):535–544CrossRefGoogle Scholar
  103. Strobel G, Daisy B, Castillo U, Harper J (2004) Natural products from endophytic microorganisms. J Nat Prod 67(2):257–268CrossRefGoogle Scholar
  104. Strobel GA, Kluck K, Hess WM, Sears J, Ezra D, Vargas PN (2007) Muscodor albus E-6, an endophyte of Guazuma ulmifolia making volatile antibiotics: isolation, characterization and experimental establishment in the host plant. Microbiology 153(8):2613–2620PubMedCrossRefGoogle Scholar
  105. Sudha V, Baskar RGK, Al-Dhabi NA, Duraipandiyan V (2016) Biological properties of endophytic fungi. Braz Arch Biol Technol 59:e16150436CrossRefGoogle Scholar
  106. Szilagyi-Zecchin VJ, Adamoski D, Gomes RR, Hungria M, Ikeda AC, Kava-Cordeiro V, Glienke C, Galli-Terasawa LV (2016) Composition of endophytic fungal community associated with leaves of maize cultivated in south Brazilian field. Acta Microbiol Immunol Hung 63:449–466PubMedCrossRefGoogle Scholar
  107. Uzma F, Hashem A, Murthy N, Mohan HD, Kamath PV, Singh BP, Venkataramana M, Gupta VK, Siddaiah CN, Chowdappa S, Alqaeawi AA, Abd-Allah EF (2018) Endophytic fungi—alternative sources of cytotoxic compounds: a review. Front Pharmacol 9(309):1–37.  https://doi.org/10.3389/fphar.2018.00309CrossRefGoogle Scholar
  108. Van Wyk M, Pegg G, Lawson S, Wingfield MJ (2007) Ceratocystis atrox sp. nov associated with Phoracanthta acanthocera infestations on Eucalyptus in Australia. Australas Plant Pathol 36:407–414CrossRefGoogle Scholar
  109. Vélez JM, Tschaplinski TJ, Vilgalys R, Schadt CW, Bonito G, Hameed K, Hamilton CE (2017) Characterization of a novel, ubiquitous fungal endophyte from the rhizosphere and root endosphere of Populus trees. Fungal Ecol 27:78–86CrossRefGoogle Scholar
  110. Verma VC, Gond SK, Kumar A, Kharwar RN, Boulanger LA, Strobel GA (2011) Endophytic fungal flora from roots and fruits of an Indian neem plant Azadirachta indica A. Juss., and impact of culture media on their isolation. Indian J Microbiol 51(4):469–476PubMedPubMedCentralCrossRefGoogle Scholar
  111. Verma SK, Kumar A, Lal M, Das MD (2015) Biodegradation of synthetic dye by endophytic fungal isolate in calotropis procera root. Int J Appl Sci Biotechnol 3(3):373–380CrossRefGoogle Scholar
  112. Wagenaar MM, Corwin J, Strobel G, Clardy J (2000) Three new cytochalasins produced by an endophytic fungus in the genus Rhinocladiella. J Nat Prod 63(12):1692–1695PubMedCrossRefGoogle Scholar
  113. Wang Y, Li H, Feng G, Du L, Zeng D (2017) Biodegradation of diuron by an endophytic fungus Neurospora intermedia DP8-1 isolated from sugarcane and its potential for remediating diuron-contaminated soils. PLoS One 12(8):e0182556PubMedPubMedCentralCrossRefGoogle Scholar
  114. Waqas M, Khana AL, Md Hamayun C, Shahzada R, Kanga S, Kime JG, Lee IJ (2015) Endophytic fungi promote plant growth and mitigate the adverse effects of stem rot: an example of Penicillium citrinum and Aspergillus terreus. J Plant Interact 10(1):280–287CrossRefGoogle Scholar
  115. White T, Bruns T, Lee S et al (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Shinsky DG, Sninsky JJ (eds) PCR protocols: a guide to methods and applications, vol 315. Academic, San Diego, p 22Google Scholar
  116. Yuan Y, Feng H, Wang L, Li Z, Shi Y, Zhao L et al (2017) Potential of endophytic fungi isolated from cotton roots for biological control against Verticillium Wilt disease. PLoS One 12(1):e0170557PubMedPubMedCentralCrossRefGoogle Scholar
  117. Zakaria L, Yaakop AS, Salleh B, Zakaria M (2010) Trop Life Sci Res 21(1):101–107PubMedPubMedCentralGoogle Scholar
  118. Zhang X, Li C, Nan Z (2012) Effects of cadmium stress on seed germination and seedling growth of Elymus dahuricus infected with the Neotyphodium endophyte. Sci China Life Sci 55(9):793–799PubMedCrossRefGoogle Scholar
  119. Zhao J, Zhou L, Wang J, Shan T, Zhong L, Liu X, Gao X (2010) Endophytic fungi for producing bioactive compounds originally from their host plants. In: Vilas AM (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology, vol 1. Formatex Research Center, pp 567–576Google Scholar
  120. Zhao J, Shan T, Mou Y, Zhou L (2011) Plant derived bioactive compounds produced by endophytic fungi. Mini Rev Med Chem 11:159–168CrossRefGoogle Scholar
  121. Zhu GS, Yu ZN, Gui Y, Liu ZY (2008) A novel technique for isolating orchid mycorrhizal fungi. Fungal Divers 33:123–137Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Vinay Kumar
    • 1
  • Ravindra Soni
    • 2
  • Lata Jain
    • 1
  • Biplab Dash
    • 2
  • Reeta Goel
    • 3
  1. 1.ICAR-National Institute of Biotic Stress ManagementRaipurIndia
  2. 2.Department of Agril. MicrobiologyIndira Gandhi Krishi VishwavidhyalayaRaipurIndia
  3. 3.Department of MicrobiologyGB Pant University of Agriculture and TechnologyPantnagarIndia

Personalised recommendations