Advertisement

Endophytic Fungi: Promising Source of Novel Bioactive Compounds

  • Fazilath Uzma
  • Chakrabhavi D. Mohan
  • Chandra N. Siddaiah
  • Srinivas Chowdappa
Chapter
Part of the Fungal Biology book series (FUNGBIO)

Abstract

Natural products have been used since earliest times for the treatment of several ailments. They offer excellent prospects for discovery of bioactive compounds and are the basis for the synthesis of effective drugs. Natural products from endophytic fungi of medicinal plants have been recognized as potential sources of bioactive compounds. Endophytes exemplify a diverse microbial community that exists in distinct environments and their diversity in these unique habitats benefits in the exploration of novel bioactive compounds. Fungal endophytes occur ubiquitously in plants and are generally asymptomatic within the host plants. The mutualistic association of a plant with an endophyte could influence the production of analogous bioactive compounds as the host plant. An understanding of biologically active compound production mechanism and their activity is essential for the development of new compounds in the drug discovery process. From the time when taxol, a potent anticancer compound was discovered, research on endophytic fungi has gained momentum and yielded several compounds with antibacterial, antiviral, antioxidant, immunosuppressant, anti-inflammatory, anti-diabetic, and anticancer properties. The main focus of this chapter is to provide a concise approach to the origin, classification, host-endophyte symbiosis, and the endophytic fungal role in diverse areas such as plant growth enhancers, antimicrobials, anticancer agents, and antioxidants. This chapter aims to highlight the potential benefits of secondary metabolites of endophytic fungi in varied fields which are valuable to mankind.

Keywords

Natural products Endophytic fungi Symbiosis Secondary metabolites Bioactive compounds 

References

  1. Abd–Elsalam KA, Hashim AF (2013) Hidden fungi as microbial and nano–factories for anticancer agents. Fungal Genom Biol 3:e115CrossRefGoogle Scholar
  2. Akay S, Ekiz G, Kocabas F, EE H–K, Korkmaz KS, Bedir E (2014) A new 5, 6-dihydro-2-pyrone derivative from Phomopsis amygdali, an endophytic fungus isolated from hazelnut (Corylusavellana). Phytochem Lett 7:93CrossRefGoogle Scholar
  3. Aly AH, Debbab A, Kjer J, Proksch P (2010) Fungal endophytes from higher plants: a prolific source of phytochemicals and other bioactive natural products. Fungal Divers 41(1):1–16CrossRefGoogle Scholar
  4. Aly AH, Debbab A, Proksch P (2011) Fungal endophytes: unique plant inhabitants with great promises. Appl Microbiol Biotechnol 90(6):1829–1845CrossRefPubMedPubMedCentralGoogle Scholar
  5. Arnold AE (2007) Understanding the diversity of foliar endophytic fungi: progress, challenges, and frontiers. Fungal Biol Rev 21(2):51–66CrossRefGoogle Scholar
  6. Arnold AE, Lewis LC (2005) Ecology and evolution of fungal endophytes, and their roles against insects. In: Vega FE, Blackwell M (eds) Insect–Fungal Associations: Ecology and evolution. Oxford University Press, New York, pp 74–96Google Scholar
  7. Arnold AE, Lutzoni F (2007) Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology 88:541–549CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bacon CW, Porter JK, Robins JD, Lutrell EJ (1977) Epichloë typhina from toxic tall fescue grass. Appl Environ Microbiol 34:576–581PubMedCentralPubMedGoogle Scholar
  9. Balunas MJ, Kinghorn AD (2005) Drug discovery from medicinal plants. Life Sci 78(5):431–441CrossRefPubMedPubMedCentralGoogle Scholar
  10. Barazani O, von Dahl CC, Baldwin IT (2007) Sebacina vermifera promotes the growth and fitness of Nicotiana attenuata by inhibiting ethylene signaling. Plant Physiol 144(2):1223–1232PubMedCentralCrossRefPubMedGoogle Scholar
  11. Bischoff JF, White JF (2005) Evolutionary development of the Clavicipitaceae. Mycology Series, 23:505Google Scholar
  12. Bisht GS, Awasthi AK, Dhole TN (2006) Antimicrobial activity of Hedychium spicatum. Fitoterapia 77(3):240–242CrossRefPubMedPubMedCentralGoogle Scholar
  13. Blagosklonny MV (2005) Carcinogenesis, cancer therapy and chemoprevention. Cell Death Differ 12:592–602CrossRefPubMedPubMedCentralGoogle Scholar
  14. Brundrett MC (2006) Understanding the roles of multifunctional mycorrhizal and endophytic fungi. In: Schulz B, Boyle C, Sieber TN (eds) Microbial root endophytes, Soil biology, Vol 9, Springer Verlag, Berlin, Heidelberg, Germany, pp 281–298.Google Scholar
  15. Brundrett MC (2009) Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320(1–2):37–77CrossRefGoogle Scholar
  16. Cai Y, Luo Q, Sun M, Corke H (2004) Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci 74(17):2157–2184CrossRefPubMedPubMedCentralGoogle Scholar
  17. Casella TM, Eparvier V, Mandavid H, Bendelac A, Odonne G, Dayan L, Duplais C, Espindola LS, Stien D (2013) Antimicrobial and cytotoxic secondary metabolites from tropical leaf endophytes: isolation of antibacterial agent pyrrocidine C from Lewia infectoria SNB–GTC2402. Phytochemistry 96:370–377CrossRefGoogle Scholar
  18. Chinworrungsee M, Wiyakrutta S, Sriubolmas N, Chuailua P, Suksamrarn A (2008) Cytotoxic activities of trichothecenes isolated from an endophytic fungus belonging to order hypocreales. Arch Pharm Res 31:611CrossRefPubMedPubMedCentralGoogle Scholar
  19. Cragg GM, Newman DJ (2013) Natural products: a continuing source of novel drug leads. Biochim Biophys Acta 1830(6):3670–3695PubMedCentralCrossRefPubMedGoogle Scholar
  20. Cragg GM, Grothaus PG, Newman DJ (2009) Impact of natural products on developing new anti-cancer agents. Chem Rev 109(7):3012–3043CrossRefPubMedPubMedCentralGoogle Scholar
  21. Cui JL, Guo TT, Ren ZX, Zhang NS, Wang ML (2015) Diversity and antioxidant activity of culturable endophytic fungi from alpine plants of Rhodiola crenulata, R. angusta, and R. sachalinensis. PLoS One 10(3):e0118204PubMedCentralCrossRefPubMedGoogle Scholar
  22. Devi LS, Joshi SR (2014) Ultrastructures of silver nanoparticles biosynthesized using endophytic fungi. J Microsc Ultrastruct 3(1):29–37.Google Scholar
  23. Davies J, Davies D (2010) Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 74(3):417–433PubMedCentralCrossRefPubMedGoogle Scholar
  24. Davis EC, Shaw AJ (2008) Biogeographic and phylogenetic patterns in diversity of liverwort-associated endophytes. Am J Bot 95(8):914–924CrossRefGoogle Scholar
  25. Demain AL, Sanchez S (2009) Microbial drug discovery: 80 years of progress. J Antibiot 62(1):5CrossRefGoogle Scholar
  26. Demain AL, Vaishnav P (2011) Natural products for cancer chemotherapy. Microb Biotechnol 4(6):687–699PubMedCentralCrossRefPubMedGoogle Scholar
  27. Desire MH, Bernard F, Forsah MR, Assang CT, Denis ON (2014) Enzymes and qualitative phytochemical screening of endophytic fungi isolated from Lantana camara Linn. Leaves. J Appl Biol Biotechnol 2(06):001–006Google Scholar
  28. Durán N, Marcato PD, De S, Gabriel IH, Alves OL, Esposito E (2007) Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J Biomed Nanotechnol 3:203–208CrossRefGoogle Scholar
  29. Elsässer B, Krohn K, Flörke U, Root N, Aust HJ, Draeger S, Schulz B, Antus S, Kurtán T (2005) X-ray structure determination, absolute configuration and biological activity of phomoxanthone A. Eur J Org Chem 21:4563–4570CrossRefGoogle Scholar
  30. Ernst M, Mendgen KW, Wirsel SG (2003) Endophytic fungal mutualists: seed–borne Stagonospora spp. enhances reed biomass production in axenic microcosms. Mol Plant-Microbe Interact 16(7):580–587CrossRefGoogle Scholar
  31. Faeth SH, Hamilton CE (2006) Does an asexual endophyte symbiont alter life stage and long–term survival in a perennial host grass? Microb Ecol 52(4):748–755CrossRefGoogle Scholar
  32. Frisvad JC, Andersen B, Thrane U (2008) The use of secondary metabolite profiling in chemotaxonomy of filamentous fungi. Mycol Res 112(2):231–240CrossRefPubMedPubMedCentralGoogle Scholar
  33. Ganley RJ, Newcombe G (2006) Fungal endophytes in seeds and needles of Pinus monticola. Mycol Res 110(3):318–327CrossRefPubMedPubMedCentralGoogle Scholar
  34. Gao N, Shang ZC, Yu P, Luo J, Jian KL, Kong LY, Yang MH (2017) Alkaloids from the endophytic fungus Penicillium brefeldianum and their cytotoxic activities. Chinese Chem Lett 28:109CrossRefGoogle Scholar
  35. Garbeva P, Van Overbeek LS, Van Vuurde JWL, Van Elsas JD (2001) Analysis of endophytic bacterial communities of potato by plating and denaturing gradient gel electrophoresis (DGGE) of 16S rDNA based PCR fragments. Microb Ecol 41(4):369–383CrossRefPubMedPubMedCentralGoogle Scholar
  36. Gouda S, Das G, Sen SK, Shin HS, Patra JK (2016) Endophytes: a treasure house of bioactive compounds of medicinal importance. Front Microbiol 7:1538PubMedCentralCrossRefPubMedGoogle Scholar
  37. Goutam J, Sharma VK, Verma SK, Singh DK, Kumar J, Mishra A, Kumar A, Kharwar RN (2014) Optimization of culture conditions for enhanced production of bioactive metabolites rich in antimicrobial and antioxidant activities isolated from Emericella quadrilineata an endophyte of Pteris pellucida. J Pure Appl Microbiol 8(3):2059–2073Google Scholar
  38. Harper JK, Arif AM, Ford EJ, Strobel GA, Porco JA, Tomer DP, Oneill KL, Heider EM, Grant DM (2003) Pestacin: a 1,3–dihydro isobenzofuran from Pestalotiopsis microspora possessing antioxidant and antimycotic activities. Tetrahedron 59(14):2471–2476CrossRefGoogle Scholar
  39. Herre EA, Mejía LC, Kyllo DA, Rojas E, Maynard Z, Butler A, Van Bael SA (2007) Ecological implications of anti-pathogen effects of tropical fungal endophytes and mycorrhizae. Ecology 88(3):550–558CrossRefPubMedPubMedCentralGoogle Scholar
  40. Hoffman MT, Arnold AE (2010) Diverse bacteria inhabit living hyphae of phylogenetically diverse fungal endophytes. Appl Environ Microbiol 76(12):4063–4075PubMedCentralCrossRefPubMedGoogle Scholar
  41. Hol WG, de la Pena E, Moens M, Cook R (2007) Interaction between a fungal endophyte and root herbivores of Ammophila arenaria. Basic Appl Ecol 8(6):500–509CrossRefGoogle Scholar
  42. Huang WY, Cai YZ, Hyde KD, Corke H, Sun M (2007a) Endophytic fungi from Nerium oleander L (Apocynaceae): main constituents and antioxidant activity. World J Microbiol Biotechnol 23(9):1253–1263CrossRefGoogle Scholar
  43. Huang WY, Cai YZ, Xing J, Corke H, Sun M (2007b) A potential antioxidant resource: endophytic fungi from medicinal plants. Econ Bot 61(1):14–30CrossRefGoogle Scholar
  44. Idris AM, Al–tahir I, Idris E (2013) Antibacterial activity of endophytic fungi extracts from the medicinal plant Kigelia africana. Egypt Acad J Biol Sci 5(1):1–9Google Scholar
  45. Isaka M, Chinthanom P, Boonruangprapa T, Rungjindamai N, Pinruan U (2010) Eremophilane type sesquiterpenes from the fungus Xylaria sp. BCC 21097. J Nat Prod 73:683CrossRefPubMedPubMedCentralGoogle Scholar
  46. Jalgaonwala RE, Mahajan RT (2011) Evaluation of hydrolytic enzyme activities of endophytes from some indigenous medicinal plants. J Agric Technol 7(6):1733–1741Google Scholar
  47. Joseph B, Priya RM (2011) Bioactive compounds from endophytes and their potential in pharmaceutical effect: a review. Am J Biochem Mol Biol 1(3):291–309CrossRefGoogle Scholar
  48. Kaul S, Ahmed M, Zargar K, Sharma P, Dhar MK (2013) Prospecting endophytic fungal assemblage of Digitalis lanata Ehrh.(foxglove) as a novel source of digoxin: a cardiac glycoside. 3 Biotech 3(4):335–340CrossRefPubMedPubMedCentralGoogle Scholar
  49. Kharwar RN, Mishra A, Gond SK, Stierle A, Stierle D (2011) Anticancer compounds derived from fungal endophytes: their importance and future challenges. Nat Prod Rep 28(7):1208–1228CrossRefPubMedPubMedCentralGoogle Scholar
  50. Kumar PG, Mir Hassan Ahmed SK, Desai S, Leo Daniel Amalraj E, Rasul A (2014) In vitro screening for abiotic stress tolerance in potent biocontrol and plant growth promoting strains of Pseudomonas and Bacillus spp. Int J Bacteriol 2014:1–6CrossRefGoogle Scholar
  51. Kusari S, Lamshöft M, Spiteller M (2009) Aspergillus fumigatus Fresenius, an endophytic fungus from Juniperus communis L. Horstmann as a novel source of the anticancer pro-drug deoxypodophyllotoxin. J Appl Microbiol 107(3):1019–1030PubMedCentralCrossRefGoogle Scholar
  52. Kusari S, Hertweck C, Spiteller M (2012) Chemical ecology of endophytic fungi: origins of secondary metabolites. Chem Biol 19(7):792–798PubMedCentralCrossRefPubMedGoogle Scholar
  53. Lam KS (2006) Discovery of novel metabolites from marine actinomycetes. Curr Opin Microbiol 9(3):245–251CrossRefPubMedPubMedCentralGoogle Scholar
  54. Li G, Kusari S, Golz C, Laatsch H, Strohmann C, Spiteller M (2017) Epigenetic modulation of endophytic Eupenicillium sp. LG41 by a histone deacetylase inhibitor for production of decalin-containing compounds. J Nat Prod 80:983–988CrossRefPubMedPubMedCentralGoogle Scholar
  55. Ling L, Liu S, Niu S, Guo L, Chen X, Che Y (2009) Isoprenylatedchromone derivatives from the plant endophytic fungus, Pestalotiopsis fici. J Nat Prod 72:1482CrossRefGoogle Scholar
  56. Majumder A, Jha S (2009) Biotechnological approaches for the production of potential anticancer leads podophyllotoxin and paclitaxel: an overview. J Biol Sci 1(1):46–69Google Scholar
  57. Malinowski DP, Belesky DP (2006) Ecological importance of Neotyphodium spp. grass endophytes in agroecosystems. Grassl Sci 52(1):1–14CrossRefGoogle Scholar
  58. Mandyam K, Fox C, Jumpponen A (2012) Septate endophyte colonization and host responses of grasses and forbs native to a tallgrass prairie. Mycorrhiza 22(2):109–119CrossRefPubMedPubMedCentralGoogle Scholar
  59. Márquez LM, Redman RS, Rodríguez RJ, Roossinck MJ (2007) A virus in a fungus in a plant: three-way symbiosis required for thermal tolerance. Science 315:513–515CrossRefPubMedPubMedCentralGoogle Scholar
  60. Márquez SS, Bills GF, Acuña LD, Zabalgogeazcoa I (2010) Endophytic mycobiota of leaves and roots of the grass Holcus lanatus. Fungal Divers 41(1):115–123CrossRefGoogle Scholar
  61. Medina C, Santos-Martinez MJ, Radomski A, Corrigan OI, Radomski MW (2007) Nanoparticles: pharmacological and toxicological significance. Br J Pharmacol 150:552–558PubMedCentralCrossRefPubMedGoogle Scholar
  62. Moricca S, Ragazzi A (2008) Fungal endophytes in Mediterranean oak forests: a lesson from Discula quercina. Phytopathology 98:380–386CrossRefPubMedPubMedCentralGoogle Scholar
  63. Mousa WK, Raizada MN (2013) The diversity of anti-microbial secondary metabolites produced by fungal endophytes: an interdisciplinary perspective. Front Microbiol 4:65PubMedCentralCrossRefPubMedGoogle Scholar
  64. Netala VR, Bethu MS, Pushpalatha B, Baki VB, Aishwarya S, Rao JV, Tartte V (2016) Biogenesis of silver nanoparticles using endophytic fungus Pestalotiopsis microspora and evaluation of their antioxidant and anticancer activities. Int J Nanomedicine 11:5683–5696PubMedCentralCrossRefPubMedGoogle Scholar
  65. Okigbo RN, Anuagasi CL, Amadi JE (2009) Advances in selected medicinal and aromatic plants indigenous to Africa. J Med Plants Res 3(2):086–095Google Scholar
  66. Pandya M, Naresh Kumar G, Rajkumar S (2013) Invasion of rhizobial infection thread by non-rhizobia for colonization of Vignaradiata root nodules. FEMS Microbiol Lett 348(1):58–65CrossRefPubMedPubMedCentralGoogle Scholar
  67. Pavarini DP, Pavarini SP, Niehues M, Lopes NP (2012) Exogenous influences on plant secondary metabolite levels. Anim Feed Sci Technol 176(1):5–16CrossRefGoogle Scholar
  68. Petrini O (1986) Taxonomy of endophytic fungi of aerial plant tissues. In: Fokkema NJ, van den Huevel J (eds) Microbiology of the phyllosphere. Cambridge University Press, Cambridge, pp 175–187Google Scholar
  69. Petrini O (1991) Fungal endophytes of tree leaves. In: Andrew IA, Hirano SS (eds) Microbial ecology of leaves. Springer, New York, pp 179–197CrossRefGoogle Scholar
  70. Photita W, Lumyong S, Lumyong P, McKenzie EHC, Hyde KD (2004) Are some endophytes of Musa acuminata latent pathogens? Fungal Divers 16:131–140Google Scholar
  71. Pimentel MR, Molina G, Dionísio AP, Maróstica MR Jr, Pastore GM (2011) The use of endophytes to obtain bioactive compounds and their application in biotransformation process. Biotechnol Res Int 2011:576286CrossRefGoogle Scholar
  72. Pinheiro EA, Carvalho JM, dos Santos DC, Feitosa Ade O, Marinho PS, Guilhon GM, de Souza AD, da Silva FM, Marinho AM (2013) Antibacterial activity of alkaloids produced by fungus Aspergillus sp. EJC08 isolated from medical plant Bauhinia guianensis. Nat Prod Res 27:1633–1638CrossRefPubMedPubMedCentralGoogle Scholar
  73. Pompeng P, Sommit D, Sriubolmas N, Ngamrojanavanich N, Matsubara K, Pudhom K (2013) Antiangiogenetic effects of anthranoids from Alternaria sp. an endophytic fungus in a Thai medicinal plant Erythrina variegata. Phytomedicine 20:918CrossRefPubMedPubMedCentralGoogle Scholar
  74. Pongcharoen W, Rukachaisirikul V, Phongpaichit S, Kühn T, Pelzing M, Sakayaroj J, Taylor WC (2008) Metabolites from the endophytic fungus Xylaria sp. PSU–D14. Phytochemistry 69(9):1900–1902CrossRefGoogle Scholar
  75. Promputtha I, Lumyong S, Dhanasekaran V, McKenzie EH, Hyde KD, Jeewon R (2007) A phylogenetic evaluation of whether endophytes become saprotrophs at host senescence. Microb Ecol 53(4):579–590CrossRefPubMedPubMedCentralGoogle Scholar
  76. Qadri M, Johri S, Shah BA, Khajuria A, Sidiq T, Lattoo SK, Riyaz–Ul–Hassan S (2013) Identification and bioactive potential of endophytic fungi isolated from selected plants of the Western Himalayas. Springerplus 2(1):8PubMedCentralCrossRefPubMedGoogle Scholar
  77. Qin S, Hussain H, Schulz B, Draeger S, Krohn K (2010) Two new metabolites, epoxydinea and b, from Phoma sp. Helv Chim Acta 93(1):169–174CrossRefGoogle Scholar
  78. Raheman F, Deshmukh S, Ingle A, Gade A, Rai M (2011) Silver nanoparticles: novel antimicrobial agent synthesized from a endophytic fungus Pestalotia sp. isolated from leaves of Syzygium cumini(L). Nano Biomed Eng 3:174–178CrossRefGoogle Scholar
  79. Ratnaweera PB, de Silva ED, Williams DE, Andersen RJ (2015) Antimicrobial activities of endophytic fungi obtained from the arid zone invasive plant Opuntia dillenii and the isolation of equisetin, from endophytic Fusarium sp. BMC Complement Altern Med 15(1):220PubMedCentralCrossRefPubMedGoogle Scholar
  80. Rayner MC (1915) Obligate symbiosis in Calluna vulgaris. Ann Bot 29(113):97–133CrossRefGoogle Scholar
  81. Rodriguez RJ, White Jr JF, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182(2):314–330CrossRefGoogle Scholar
  82. Rout SP, Choudary KA, Kar DM, Das L, Jain A (2009) Plants in traditional medicinal system–future source of new drugs. Int J Pharm Pharm Sci 1(1):1–23Google Scholar
  83. Rudgers JA, Clay K (2007) Endophyte symbiosis with tall fescue: how strong are the impacts on communities and ecosystems? Fungal Biol Rev 21(2):107–124CrossRefGoogle Scholar
  84. Rukachaisirikul V, Sommart U, Phongpaichit S, Sakayaroj J, Kirtikara K (2008) Metabolites from the endophytic fungus Phomopsis sp. PSU-D15. Phytochemistry 69(3):783–787CrossRefGoogle Scholar
  85. Saikkonen K (2007) Forest structure and fungal endophytes. Fungal Biol Rev 21(2):67–74CrossRefGoogle Scholar
  86. Saikkonen K, Faeth SH, Helander M, Sullivan TJ (1998) Fungal endophytes: a continuum of interactions with host plants. Annu Rev Ecol Syst 29(1):319–343CrossRefGoogle Scholar
  87. Saikkonen K, Saari S, Helander M (2010) Defensive mutualism between plants and endophytic fungi? Fungal Div 41:101–113CrossRefGoogle Scholar
  88. Saleem M, Tousif MI, Riaz N, Ahmed I, Schulz B, Ashraf M, Nasar R, Pescitelli G, Hussain H, Jabbar A, Shafiq N, Krohn K (2013) Cryptosporioptide: a bioactive polyketide produced by an endophytic fungus Cryptosporiopsis sp. Phytochemistry 93:199–202CrossRefPubMedPubMedCentralGoogle Scholar
  89. Sasidharan S, Chen Y, Saravanan D, Sundram KM, Latha LY (2011) Extraction, isolation and characterization of bioactive compounds from plants’ extracts. Afr J Trad Comp Alt Med 8(1):1–10Google Scholar
  90. Schardl CL, Leuchtmann A, Spiering MJ (2004) Symbioses of grasses with seedborne fungal endophytes. Annu Rev Plant Biol 55:315–340CrossRefPubMedPubMedCentralGoogle Scholar
  91. Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109(6):661–686CrossRefGoogle Scholar
  92. Schulz B, Römmert AK, Dammann U, Aust HJ, Strack D (1999) The endophyte–host interaction: a balanced antagonism? Mycol Res 103(10):1275–1283CrossRefGoogle Scholar
  93. Senadeera SP, Wiyakrutta S, Mahidol C, Ruchirawat S, Kittakoop P (2012) A novel tricyclic polyketide and its biosynthetic precursor azaphilone derivatives from the endophytic fungus Dothideomycete sp. Org Biomol Chem 10:7220–7226CrossRefPubMedPubMedCentralGoogle Scholar
  94. Shankar SS, Ahmad A, Parischa R, Sastry M (2003) Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem 13:1822–1826CrossRefGoogle Scholar
  95. Siddaiah CN, Satyanarayana NR, Mudili V, Gupta VK, Gurunathan S, Rangappa S, Huntrike SS, Srivastava RK (2017) Elicitation of resistance and associated defense responses in Trichoderma hamatum induced protection against pearl millet downy mildew pathogen. Sci Rep 7:43991Google Scholar
  96. Singh LP, Gill SS, Tuteja N (2011) Unraveling the role of fungal symbionts in plant abiotic stress tolerance. Plant Signal Behav 6(2):175–191PubMedCentralCrossRefPubMedGoogle Scholar
  97. Singh D, Rathod V, Ninganagouda S, Hiremath J, Singh AK, Mathew J (2014) Optimization and characterization of silver nanoparticle by endophytic fungi Penicillium sp. isolated from Curcuma longa (turmeric) and application studies against MDR E. coli and S. aureus. Bioinorg Chem Appl 8Google Scholar
  98. Singh P, Kim YJ, Zhang D, Yang DC (2016) Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol 34(7):588–599CrossRefPubMedPubMedCentralGoogle Scholar
  99. Spatafora JW, Bushley KE (2015) Phylogenomics and evolution of secondary metabolism in plant–associated fungi. Curr Opin Plant Biol 26:37–44CrossRefPubMedPubMedCentralGoogle Scholar
  100. Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260:214–214CrossRefPubMedPubMedCentralGoogle Scholar
  101. Strobel GA (2002) Microbial gifts from the rain forest. J Phytopathol 24:14–20Google Scholar
  102. Toghueo RMK, Eke P, Zabalgogeazcoa Í, de Aldana BRV, Nana LW, Boyom FF (2016) Biocontrol and growth enhancement potential of two endophytic Trichoderma spp. from Terminalia catappa against the causative agent of Common Bean Root Rot (Fusarium solani). Biol Conserv 96:8–20Google Scholar
  103. Uzma F, Mohan CD, Hashem A, Konappa NM, Rangappa S, Kamath PV, Singh BP, Mudili V, Gupta VK, Siddaiah CN, Chowdappa S, Alqarawi AA, Abd Allah EF (2018) Endophytic fungi—alternative sources of cytotoxic compounds: a review. Front Pharmacol 9(309):1–37. https://doi.org/10.3389/fphar.2018.00309
  104. Varma A, Verma S, Sahay N, Bütehorn B, Franken P (1999) Piriformospora indica, a cultivable plant-growth-promoting root endophyte. Appl Environ Microbiol 65(6):2741–2744PubMedCentralPubMedGoogle Scholar
  105. Varma A, Bakshi M, Lou B, Hartmann A, Oelmueller R (2012) Piriformospora indica: a novel plant growth-promoting mycorrhizal fungus. Agric Res 1(2):117–131CrossRefGoogle Scholar
  106. Verma VC, Kharwar RN, Gange AC (2010) Biosynthesis of antimicrobial silver nanoparticles by the endophytic fungus Aspergillus clavatus. Nanomedicine 5:33–40CrossRefGoogle Scholar
  107. Vinale F, Manganiello G, Nigro M, Mazzei P, Piccolo A, Pascale A, Ruocco M, Marra R, Lombardi N, Lanzuise S, Varlese R (2014) A novel fungal metabolite with beneficial properties for agricultural applications. Molecules 19(7):9760–9772PubMedCentralCrossRefPubMedGoogle Scholar
  108. Viswambari Devi R, Doble M, Verma R (2015) Nanomaterials for early detection of cancer biomarker with special emphasis on gold nanoparticles in immunassays/sensors. Biosens Bioelectron 68:688–698CrossRefGoogle Scholar
  109. Wang FW, Jiao RH, Cheng AB, Tan SH, Song YC (2007) Antimicrobial potentials of endophytic fungi residing in Quercus variabilis and brefeldin A obtained from Cladosporium sp. World J Microbiol Biotechnol 23(1):79–83CrossRefGoogle Scholar
  110. Wani K, Shweta S, Pooja S, Pooja T (2016). Production of novel secondary metabolites from endophytic fungi by using fermentation process. Indo Am J Pharm Res 6(03)Google Scholar
  111. Wu H, Yang H, You X, Li Y (2012) Isolation and characterization of saponin-producing fungal endophytes from Aralia elata in Northeast China. Int J Mol Sci 13(12):16255–16266PubMedCentralCrossRefPubMedGoogle Scholar
  112. Xiao X, Luo S, Zeng G, Wei W, Wan Y, Chen L, Xi Q (2010) Biosorption of cadmium by endophytic fungus (EF) Microsphaeropsis sp. LSE10 isolated from cadmium hyperaccumulator Solanum nigrum L. Bioresour Technol 101(6):1668–1674CrossRefPubMedPubMedCentralGoogle Scholar
  113. Yadav M, Yadav A, Yadav JP (2014) In vitro antioxidant activity and total phenolic content of endophytic fungi isolated from Eugenia jambolana Lam. Asian Pac J Trop Med 7:S256–S261CrossRefGoogle Scholar
  114. Zaferanloo B, Mahon PJ, Palombo EA (2012) Endophytes from medicinal plants as novel sources of bioactive compounds. Medicinal plants: diversity and drugs. Science Publisher: USA, 355–411Google Scholar
  115. Zhang Q, Wu J, Nguyen A, Wang BD, He P, Laurent GS, Su YA (2008) Molecular mechanism underlying differential apoptosis between human melanoma cell lines UACC903 and UACC903 (+6) revealed by mitochondria-focused cDNA microarrays. Apoptosis 13(8):993–1004PubMedCentralCrossRefPubMedGoogle Scholar
  116. Zhang Q, Wang SQ, Tang HY, Li XJ, Zhang L, Xiao J, Gao YQ, Zhang AL, Gao JM (2013) Potential allelopathic indole diketopiperazines produced by the plant endophytic Aspergillus fumigatus using the one strain–many compounds method. J Agric Food Chem 61(47):11447–11452CrossRefPubMedPubMedCentralGoogle Scholar
  117. Zhao J, Zhou L, Wang J, Shan T, Zhong L, Liu X, Gao X (2010) Endophytic fungi for producing bioactive compounds originally from their host plants. Curr Res Technol Educ Trop Appl Microbiol Microbiol Biotechnol 1:567–576Google Scholar
  118. Zhao J, Shan T, Mou Y, Zhou L (2011) Plant-derived bioactive compounds produced by endophytic fungi. Mini Rev Med Chem 11(2):159–168CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Fazilath Uzma
    • 1
  • Chakrabhavi D. Mohan
    • 2
  • Chandra N. Siddaiah
    • 3
  • Srinivas Chowdappa
    • 1
  1. 1.Fungal Metabolite Research Laboratory, Department of Microbiology and BiotechnologyBangalore UniversityBangaloreIndia
  2. 2.Department of Studies in Molecular BiologyUniversity of Mysore, ManasagangotriMysoreIndia
  3. 3.Department of Studies in BiotechnologyUniversity of Mysore, ManasagangotriMysoreIndia

Personalised recommendations