SERS-Active Nanovectors for Single-Cell Cancer Screening and Theranostics

  • Claudia FasolatoEmail author
Part of the Springer Theses book series (Springer Theses)


In this chapter, we will report on the application of folate-based SERS active nanovectors to single cell screening for cancer diagnostics. Owing to the overexpression of folate receptor on cancer cells, their selective targeting with the SERS-nanovector can be achieved. A single cell screening procedure based on Raman microimaging can be used to discriminate normal and cancer cells and the level of folate receptor expression can even be inferred by SERS measurements over statistically relevant cell populations. Therapeutic features of the nanovectors can be implemented by substituting folate molecule with toxic antifolate drugs. As the characterization of folate/antifolate nanovectors was discussed in Chap. 3, here we will mainly focus on the biophysical results of the experiment.


  1. [And2011]
    Ando J, Fujita K et al (2011) Dynamic SERS imaging of cellular transport pathways with endocytosed gold nanoparticles. Nano Lett 11(12):5344–5348ADSCrossRefGoogle Scholar
  2. [Bac2000]
    Backman V, Wallace MB et al (2000) Detection of preinvasive cancer cells. Nature 406(6791):35–36ADSCrossRefGoogle Scholar
  3. [Bar1983]
    Barlogie B, Raber MN et al (1983) Flow cytometry in clinical cancer research. Cancer Res 43(9):3982–3997Google Scholar
  4. [Baz2015]
    Bazak R, Houri M et al (2015) Cancer active targeting by nanoparticles: a comprehensive review of literature. J Cancer Res Clin Oncol 141(5):769–784CrossRefGoogle Scholar
  5. [BG1999]
    Bailey LB, Gregory JF et al (1999) Folate metabolism and requirements. J Nutr 129(4):779–782CrossRefGoogle Scholar
  6. [Boc2013]
    Boca-Farcau S, Potara M et al (2013) Folic acid-conjugated, SERS-labeled silver nanotriangles for multimodal detection and targeted photothermal treatment on human ovarian cancer cells. Mol Pharm 11(2):391–399CrossRefGoogle Scholar
  7. [Boe2004]
    Boecking A, Stockhausen J et al (2004) Towards a single cell cancer diagnosis. Multimodal and monocellular measurements of markers and morphology (5M). Cell Oncol 26(1–2):73–80Google Scholar
  8. [Cao2011]
    Cao D-L, Ye D-W et al (2011) A multiplex model of combining gene-based, protein-based, and metabolite-based with positive and negative markers in urine for the early diagnosis of prostate cancer. Prostate 71(7):700–710CrossRefGoogle Scholar
  9. [Che2013]
    Chen C, Ke J et al (2013) Structural basis for molecular recognition of folic acid by folate receptors. Nature 500(7463):486–489ADSCrossRefGoogle Scholar
  10. [Chi2015]
    Chinen AB, Guan CM et al (2015) Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence. Chem Rev 115(19):10530–10574CrossRefGoogle Scholar
  11. [Cro2007]
    Cross SE, Jin Y-S et al (2007) Nanomechanical analysis of cells from cancer patients. Nat Nanotechnol 2(12):780–783ADSCrossRefGoogle Scholar
  12. [Des2012]
    Desmoulin SK, Hou Z et al (2012) The human proton-coupled folate transporter: biology and therapeutic applications to cancer. Cancer Biol Ther 13(14):1355–1373CrossRefGoogle Scholar
  13. [Dom2011]
    Domenici F, Bizzarri AR et al (2011) SERS-based nanobiosensing for ultrasensitive detection of the p53 tumor suppressor. Int J Nanomed 6:2033–2042Google Scholar
  14. [Dom2012]
    Domenici F, Bizzarri AR et al (2012) Surface-enhanced Raman scattering detection of wild-type and mutant p53 proteins at very low concentration in human serum. Anal Biochem 421(1):9–15CrossRefGoogle Scholar
  15. [Dre2012]
    Dreaden EC, Alkilany AM et al (2012) The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 41(7):2740–2779CrossRefGoogle Scholar
  16. [Ehr2009]
    Ehrenberg MS, Friedman AE et al (2009) The influence of protein adsorption on nanoparticle association with cultured endothelial cells. Biomaterials 30(4):603–610CrossRefGoogle Scholar
  17. [Fan2012]
    Fan K, Cao C et al (2012) Magnetoferritin nanoparticles for targeting and visualizing tumour tissues. Nat Nanotechnol 7(7):459–464ADSCrossRefGoogle Scholar
  18. [Far1948]
    Farber S, Diamond LK et al (1948) Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid (aminopterin). N Engl J Med 238(23):787–793CrossRefGoogle Scholar
  19. [Fas2016]
    Fasolato C, Giantulli S et al (2016) Folate-based single cell screening using surface enhanced Raman microimaging. Nanoscale 8(39):17304–17313CrossRefGoogle Scholar
  20. [Fas2018]
    Fasolato C, Giantulli S et al (2018) Antifolate functionalized nanovectors: SERS investigation motivates effective theranostics (in preparation)Google Scholar
  21. [Fen2013]
    Feng D, Song Y et al (2013) Distinguishing folate-receptor-positive cells from folate-receptor-negative cells using a fluorescence off-on nanoprobe. Anal Chem 85(13):6530–6535CrossRefGoogle Scholar
  22. [Fra2015]
    Fratoddi I, Venditti I et al (2015) How toxic are gold nanoparticles? the state-of theart. Nano Res 8(6):1771–1799CrossRefGoogle Scholar
  23. [Fuj2014]
    Fujiwara R, Takenaka S et al (2014) Expression of human solute carrier family transporters in skin: possible contributor to drug-induced skin disorders. Sci Rep 4:5251CrossRefGoogle Scholar
  24. [Gho2008]
    Ghosh P, Han G et al (2008) Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 60(11):1307–1315CrossRefGoogle Scholar
  25. [GP2007]
    Ghosh SK, Pal T (2007) Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem Rev 107(11):4797–4862CrossRefGoogle Scholar
  26. [Har2003]
    Harisinghani MG, Barentsz J et al (2003) Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 348(25):2491–2499CrossRefGoogle Scholar
  27. [HM2005]
    Hattori Y, Maitani Y (2005) Folate-linked nanoparticle-mediated suicide gene therapy in human prostate cancer and nasopharyngeal cancer with herpes simplex virus thymidine kinase. Cancer Gene Ther 12(10):796–809CrossRefGoogle Scholar
  28. [Hua2008]
    Huang X, Jain PK et al (2008) Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci 23(3):217–228CrossRefGoogle Scholar
  29. [Jos2013]
    Joshi HC, Vangapandu SN et al (2013) Conjugates of noscapine and folic acid and their use in treating cancer. US Patent 8,426,398Google Scholar
  30. [Kah2007]
    Kah JCY, Kho KW et al (2007) Early diagnosis of oral cancer based on the surface plasmon resonance of gold nanoparticles. Int J Nanomed 2(4):785Google Scholar
  31. [Kan2013]
    Kang MJ, Park SH et al (2013) Folic acid-tethered Pep-1 peptide-conjugated liposomal nanocarrier for enhanced intracellular drug delivery to cancer cells: conformational characterization and in vitro cellular uptake evaluation. Int J Nanomed 8:1155CrossRefGoogle Scholar
  32. [Kel2006]
    Kelemen LE (2006) The role of folate receptor a in cancer development, progression and treatment: cause, consequence or innocent bystander? Int J Cancer 119(2):243–250CrossRefGoogle Scholar
  33. [Kne2010]
    Kneipp J, Kneipp H et al (2010) Novel optical nanosensors for probing and imaging live cells. Nanomed Nanotechnol Biol Med 6(2):214–226CrossRefGoogle Scholar
  34. [Kri2005]
    Krinsley DH, Pye K et al (2005) Backscattered scanning electron microscopy and image analysis of sediments and sedimentary rocks. Cambridge University Press, CambridgeGoogle Scholar
  35. [Krü2002]
    Krüger J, Singh K et al (2002) Development of a microfluidic device for fluorescence activated cell sorting. J Micromech Microeng 12(4):486CrossRefGoogle Scholar
  36. [Li2015]
    Li Y, Heo J et al (2015) Organelle specific imaging in live cells and immunolabeling using resonance Raman probe. Biomaterials 53:25–31CrossRefGoogle Scholar
  37. [Lu2010]
    Lu W, Singh AK et al (2010) Gold nano-popcorn-based targeted diagnosis, nanotherapy treatment, and in situ monitoring of photothermal therapy response of prostate cancer cells using surface-enhanced Raman spectroscopy. J Am Chem Soc 132(51):18103–18114CrossRefGoogle Scholar
  38. [Luc2000]
    Lucock M (2000) Folic acid: nutritional biochemistry, molecular biology, and role in disease processes. Mol Genet Metab 71(1):121–138CrossRefGoogle Scholar
  39. [Man2010]
    Mansoori GA, Brandenburg KS et al (2010) A comparative study of two folateconjugated gold nanoparticles for cancer nanotechnology applications. Cancers 2(4):1911–1928CrossRefGoogle Scholar
  40. [Mir2015]
    Mirkin CA, Meade TJ et al (2015) Nanotechnology-based precision tools for the detection and treatment of cancer. Springer, ChamCrossRefGoogle Scholar
  41. [Mit2011]
    Mitsunaga M, Ogawa M et al (2011) Cancer cell-selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules. Nat Med 17(12):1685–1691CrossRefGoogle Scholar
  42. [Pal2015]
    Pallaoro A, Hoonejani MR et al (2015) Rapid identification by surface-enhanced Raman spectroscopy of cancer cells at low concentrations flowing in a microfluidic channel. ACS Nano 9(4):4328–4336CrossRefGoogle Scholar
  43. [Par2005]
    Parker N, Turk MJ et al (2005) Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay. Anal Biochem 338(2):284–293CrossRefGoogle Scholar
  44. [Sal2013]
    Salvati A, Pitek AS et al (2013) Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat Nanotechnol 8(2):137–143ADSCrossRefGoogle Scholar
  45. [Sam2016]
    Samadian H, Hosseini-Nami S et al (2016) Folate-conjugated gold nanoparticle as a new nanoplatform for targeted cancer therapy. J Cancer Res Clin Oncol 142(11):1–13CrossRefGoogle Scholar
  46. [Sin2015]
    Singh R, Kesharwani P et al (2015) Development and characterization of folate anchored Saquinavir entrapped PLGA nanoparticles for anti-tumor activity. Drug Dev Ind Pharm 41(11):1888–1901CrossRefGoogle Scholar
  47. [Smi2015]
    Smith RA, Manassaram-Baptiste D et al (2015) Cancer screening in the United States, 2015: a review of current American Cancer Society guidelines and current issues in cancer screening. CA: Cancer J Clin 65(1):30–54Google Scholar
  48. [VoD2010]
    Vo-Dinh T, Wang H-N et al (2010) Plasmonic nanoprobes for SERS biosensing and bioimaging. J Biophotonics 3(1–2):89–102Google Scholar
  49. [Wei1992]
    Weitman SD, Lark RH et al (1992) Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues. Cancer Res 52(12):3396–3401Google Scholar
  50. [Wer2011]
    Werner ME, Karve S et al (2011) Folate-targeted nanoparticle delivery of chemo-and radiotherapeutics for the treatment of ovarian cancer peritoneal metastasis. Biomaterials 32(33):8548–8554CrossRefGoogle Scholar
  51. [WI2014]
    Weddell JC, Imoukhuede PI (2014) Quantitative characterization of cellular membrane-receptor heterogeneity through statistical and computational modeling. PloS one 9(5):e97271ADSCrossRefGoogle Scholar
  52. [Wib2013]
    Wibowo AS, Singh M et al (2013) Structures of human folate receptors reveal biological trafficking states and diversity in folate and antifolate recognition. Proc Natl Acad Sci 110(38):15180–15188ADSCrossRefGoogle Scholar
  53. [Wu1999]
    Marietta W, Gunning W et al (1999) Expression of folate receptor type a in relation to cell type, malignancy, and differentiation in ovary, uterus, and cervix. Cancer Epidemiol Biomark Prev 8(9):775–782Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Dipartimento di Fisica e GeologiaUniversità degli Studi di PerugiaPerugiaItaly

Personalised recommendations