Advertisement

Investigation on Nanoparticles and Their Molecular Functionalization

  • Claudia Fasolato
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

The essential building blocks of SERS-active systems we have studied are noble metal nanoparticles (Nps). They constitute the metallic substrate crucially contributing to SERS amplification thanks to the enhancement of the local electromagnetic field. Nowadays, Nps of various shape, size and material can be fabricated with a high degree of precision and their chemical properties can be tuned by employing different ligands. In this chapter, we will present the functionalization of noble metal Nps with a Raman reporter and their further conjugation with a biomolecule (folic acid). The characterization of the system with multiple techniques will be presented, and its SERS signature will be thoroughly discussed.

References

  1. [Bai2006]
    Baia M, Toderas F et al (2006) Probing the enhancement mechanisms of SERS with p-aminothiophenol molecules adsorbed on self-assembled gold colloidal nanoparticles. Chem Phys Lett 422(1):127–132ADSCrossRefGoogle Scholar
  2. [Bai2009]
    Baia M, Toderas F et al (2009) Multilayer structures of self-assembled gold nanoparticles as a unique SERS and SEIRA substrate. ChemPhysChem 10(7):1106–1111CrossRefGoogle Scholar
  3. [Bat2012]
    Battocchio C, Meneghini C et al (2012) Silver nanoparticles stabilized with thiols: a close look at the local chemistry and chemical structure. J Phys Chem C 116(36):19571–19578CrossRefGoogle Scholar
  4. [BP1976]
    Berne BJ, Pecora R (1976) Dynamic light scattering: with applications to chemistry, biology, and physics. Courier CorporationGoogle Scholar
  5. [Car2017]
    Carlini L, Fasolato C et al (2017) Comparison between silver and gold nanoparticles stabilized with negatively charged hydrophilic thiols: SR-XPS and SERS as probes for structural differences and similarities. Colloids Surf A: Physicochem Eng Asp 532:183–188CrossRefGoogle Scholar
  6. [Che2013]
    Chen C, Ke J et al (2013) Structural basis for molecular recognition of folic acid by folate receptors. Nature 500(7463):486–489ADSCrossRefGoogle Scholar
  7. [Col2009]
    Coluccio ML, Das G et al (2009) Silver-based surface enhanced Raman scattering (SERS) substrate fabrication using nanolithography and site selective electroless deposition. Microelectron Eng 86(4):1085–1088CrossRefGoogle Scholar
  8. [Cos2010]
    Costantini F, Benetti EM et al (2010) Enzyme-functionalized polymer brush films on the inner wall of silicon-glass microreactors with tunable biocatalytic activity. Lab on a Chip 10(24):3407–3412CrossRefGoogle Scholar
  9. [Cot2015]
    Cottat M, D’Andrea C et al (2015) High sensitivity, high selectivity SERS detection of MnSOD using optical nanoantennas functionalized with aptamers. J Phys Chem C 119(27):15532–15540CrossRefGoogle Scholar
  10. [Cou2009]
    Coussot G, Nicol E et al (2009) Colorimetric quantification of amino groups in linear and dendritic structures. Polym Int 58(5):511–518CrossRefGoogle Scholar
  11. [Dav2013]
    Davies RA, Chong NS et al (2013) Chemical enhancement of the surface enhanced Raman scattering signals of anilines via their ortho-substituentsGoogle Scholar
  12. [Dom2011]
    Domenici F, Bizzarri AR et al (2011) SERS-based nanobiosensing for ultrasensitive detection of the p53 tumor suppressor. Int J Nanomed 6:2033–2042Google Scholar
  13. [Dom2012]
    Domenici F, Bizzarri AR et al (2012) Surface-enhanced Raman scattering detection of wild-type and mutant p53 proteins at very low concentration in human serum. Anal Biochem 421(1):9–15CrossRefGoogle Scholar
  14. [Dom2016]
    Domenici F, Fasolato C et al (2016) Engineering microscale two-dimensional gold nanoparticle cluster arrays for advanced Raman sensing: an AFM study. Colloids Surf A: Physicochem Eng Asp 498:168–175CrossRefGoogle Scholar
  15. [Far1948]
    Farber S, Diamond LK et al (1948) Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid (aminopterin). New Engl J Med 238(23):787–793CrossRefGoogle Scholar
  16. [Fas2014]
    Fasolato C, Domenici F et al (2014) Dimensional scale effects on surface enhanced Raman scattering efficiency of self-assembled silver nanoparticle clusters. Appl Phys Lett 105(7):073105ADSCrossRefGoogle Scholar
  17. [Fas2016]
    Fasolato C, Giantulli S et al (2016) Folate-based single cell screening using surface enhanced Raman microimaging. Nanoscale 8(39):17304–17313CrossRefGoogle Scholar
  18. [Güh2015]
    Gühlke M, Heiner Z et al (2015) Combined near-infrared excited SEHRS and SERS spectra of pH sensors using silver nanostructures. Phys Chem Chem Phys 17(39):26093–26100CrossRefGoogle Scholar
  19. [Hid2014]
    Hidi IJ, Mühlig A et al (2014) LOC-SERS: towards point-of-care diagnostic of methotrexate. Anal Methods 6(12):3943–3947CrossRefGoogle Scholar
  20. [Hua2010]
    Huang Y-F, Zhu H-P et al (2010) When the signal is not from the original molecule to be detected: chemical transformation of para-aminothiophenol on Ag during the SERS measurement. J Am Chem Soc 132(27):9244–9246CrossRefGoogle Scholar
  21. [Hul1999]
    Hulteen JC, Treichel DA et al (1999) Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays. J Phys Chem B 103(19):3854–3863CrossRefGoogle Scholar
  22. [Hun2013]
    Hunter RJ (2013) Zeta potential in colloid science: principles and applications, vol 2. Academic press, LondonGoogle Scholar
  23. [HV2001]
    Haynes CL, Van Duyne RP (2001) Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J Phys Chem B 105(24):5599–5611CrossRefGoogle Scholar
  24. [Jia2005]
    Jiao L, Niu L et al (2005) Simple azo derivatization on 4-aminothiophenol/Au monolayer. Electrochem Commun 7(2):219–222CrossRefGoogle Scholar
  25. [Kho2012]
    Kho KW, Dinish US et al (2012) Frequency shifts in SERS for biosensing. ACS Nano 6(6):4892–4902CrossRefGoogle Scholar
  26. [Kim2010]
    Kim NH, Lee SJ et al (2010) Aptamer-mediated surface-enhanced Raman spectroscopy intensity amplification. Nano Lett 10(10):4181–4185ADSCrossRefGoogle Scholar
  27. [Kim2011]
    Kim NH, Lee SJ et al (2011) Reversible tuning of SERS hot spots with aptamers. Adv Mater 23(36):4152–4156CrossRefGoogle Scholar
  28. [Kim2012]
    Kim K, Kim KL et al (2012) Surface-enhanced Raman Scattering of 4-Aminobenzenethiol on Ag and Au: pH dependence of b 2-type bands. J Phys Chem C 116(7):4774–4779CrossRefGoogle Scholar
  29. [Kne2006]
    Kneipp K, Moskovits M et al (2006) Surface-enhanced Raman scattering: physics and applications, vol 103. Springer Science & Business Media, BerlinGoogle Scholar
  30. [Kne2010]
    Kneipp J, Kneipp H et al (2010) Novel optical nanosensors for probing and imaging live cells. Nanomed Nanotechnol Biol Med 6(2):214–226CrossRefGoogle Scholar
  31. [KV2008]
    Khoury CG, Vo-Dinh T (2008) Gold nanostars for surface-enhanced Raman scattering: synthesis, characterization and optimization. J Phys Chem C 112(48):18849–18859CrossRefGoogle Scholar
  32. [Le 2007]
    Le Ru EC, Blackie EJ et al (2007) Surface enhanced Raman scattering enhancement factors: a comprehensive study. J Phys Chem C 111(37):13794–13803CrossRefGoogle Scholar
  33. [Man2010]
    Mansoori GA, Brandenburg KS et al (2010) A comparative study of two folate-conjugated gold nanoparticles for cancer nanotechnology applications. Cancers 2(4):1911–1928CrossRefGoogle Scholar
  34. [NC2002]
    Nath N, Chilkoti A (2002) A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface. Anal Chem 74(3):504–509CrossRefGoogle Scholar
  35. [Nor2002]
    Norman TJ, Grant CD et al (2002) Near infrared optical absorption of gold nanoparticle aggregates. J Phys Chem B 106(28):7005–7012CrossRefGoogle Scholar
  36. [Nor2004]
    Nordlander P, Oubre C et al (2004) Plasmon hybridization in nanoparticle dimers. Nano Lett 4(5):899–903ADSCrossRefGoogle Scholar
  37. [Osa1994]
    Osawa M, Matsuda N et al (1994) Charge transfer resonance Raman process in surface-enhanced Raman scattering from p-aminothiophenol adsorbed on silver: Herzberg-Teller contribution. J Phys Chem 98(48):12702–12707CrossRefGoogle Scholar
  38. [Per2009]
    Perrault SD, Walkey C et al (2009) Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett 9(5):1909–1915ADSCrossRefGoogle Scholar
  39. [Ren2011]
    Ren W, Fang Y et al (2011) A binary functional substrate for enrichment and ultrasensitive SERS spectroscopic detection of folic acid using graphene oxide/Ag nanoparticle hybrids. Acs Nano 5(8):6425–6433CrossRefGoogle Scholar
  40. [Sam2013]
    Samal AK, Polavarapu L et al (2013) Size tunable Au@ Ag core- shell nanoparticles: synthesis and surface-enhanced Raman scattering properties. Langmuir 29(48):15076–15082CrossRefGoogle Scholar
  41. [Sch1977]
    Schmid ED, Schlenker P et al (1977) Raman intensity and conjugation. IV-determination of the conjugation between a phenyl ring and a carbonyl group by Raman intensity. J Raman Spectrosc 6(6):314–318ADSCrossRefGoogle Scholar
  42. [Sch2011]
    Schmid G (2011) Nanoparticles: from theory to application. Wiley, New YorkGoogle Scholar
  43. [SF2010]
    Solomons JTG, Fryhle CB (2010) Organic chemistry, 2000. Prentice Hall, Englewood CliffsGoogle Scholar
  44. [Sha2010]
    Shakeri-Zadeh A, Mansoori GA et al (2010) Cancerous cells targeting and destruction using folate conjugated gold nanoparticles. Dyn Biochem Process Biotechnol Mol Biol 4(1):06–12Google Scholar
  45. [Sön2005]
    Sönnichsen C, Reinhard BM et al (2005) A molecular ruler based on Plasmon coupling of single gold and silver nanoparticles. Nat Biotechnol 23(6):741–745CrossRefGoogle Scholar
  46. [TS1988]
    Tripathi GNR, Schuler RH (1988) Resonance Raman studies of substituent effects on the electronic structure of phenoxyl radicals. J Phys Chem 92(18):5129–5133CrossRefGoogle Scholar
  47. [Vit2011]
    Vitale F, Fratoddi I et al (2011) Mono-and bi-functional arenethiols as surfactants for gold nanoparticles: synthesis and characterization. Nanoscale Res Lett 6(1):103ADSCrossRefGoogle Scholar
  48. [Wan2014]
    Wang Y, Ji W et al (2014) Exploring the effect of intermolecular H-bonding: a study on charge-transfer contribution to surface-enhanced Raman scattering of p-Mercaptobenzoic acid. J Phys Chem C 118(19):10191–10197CrossRefGoogle Scholar
  49. [Wib2013]
    Wibowo AS, Singh M et al (2013) Structures of human folate receptors reveal biological trafficking states and diversity in folate and antifolate recognition. Proc Natl Acad Sci 110(38):15180–15188ADSCrossRefGoogle Scholar
  50. [Yos2009]
    Yoshida K, Itoh T et al (2009) Spectral shapes of surface-enhanced resonance Raman scattering sensitive to the refractive index of media around single Ag nanoaggregates. Appl Phys Lett 95(26):263104ADSCrossRefGoogle Scholar
  51. [Zho2006]
    Zhou Q, Li X et al (2006) Charge transfer between metal nanoparticles interconnected with a functionalized molecule probed by surface-enhanced Raman spectroscopy. Angew Chem Int Ed 45(24):3970–3973CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Dipartimento di Fisica e GeologiaUniversità degli Studi di PerugiaPerugiaItaly

Personalised recommendations